Physics 141. Lecture 19.

Physics 141. Lecture 19.

- Course Information.
- Quiz.
- Topics to be discussed today:
- Angular momentum.
- Conservation of angular momentum at the macroscopic and the microscopic level.
- Precession.

Course Information

- Homework set \# 8 is due on Friday November 17.
- Homework set \# 9 is due on Wednesday November 22. There will be extra office hours on Monday November 20 to answer any questions related to this assignment.
- There will be no recitations and regular office hours next week.
- Exam \# 3 will take place on Tuesday 11/28 between 8 am and 9.20 am .
- Exam \# 3 will cover the material of Chapters 8, 9, 10, and 11.

Physics 141.
 Lab \# 5. Now what?

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 19, Page 4

Analysis lab \# 5: know the goals before you start your video analysis!

- The analysis of lab \# 5 will involve the following steps:
- The videos will be analyzed using LoggerPro.
- Each student will analyze the two or three collisions in which they were involved and determine the two velocities before and after each collision.
- The students involved in each collision compare the velocities they determined and use them to either catch "silly" mistakes or obtain their best estimates
 of their velocities and the errors in their estimates.
- All velocities are converted to momenta and kinetic energies, and the entire data sets forms the basis of lab report \# 5 .

Physics 141. Lab \# 5.

- The analysis of this experiment is complex:

- Information about the collisions will be available on the web (names, can deformations, etc.).
- The two colliding students who look at the same collision need to compare their values for the velocities before and after the collision in order to determine the errors in their values (and catch any mistakes in the analysis of the video clips).
- For each collision I expect you to submit a web form with all velocities and their errors for that collision.
- I will convert the measured velocities to momenta and kinetic energies and publish the data on the web.
- Each student will look at the entire data set and compare losses in kinetic energy with the deformation of the cans.
- The lab report covering this experiment will receive the same weight as lab report \# 4. You should know now what makes a lab report great!
- Let's look at the various steps in a bit more detail.

Lab \# 5. Finding the collision time.

- The first step in interpreting the results of the video analysis is to determine the collision time.
- This can be done in LoggerPro or by looking at the results of the video analysis in Excel.
- Besides determining the collision time, it is also important to determine what time interval after the collision you should use to determine the final velocities (e.g. motion of the body will influence motion of the cart).

Calibration: wheel-to-wheel
length of cart $=0.766 \mathrm{~m}$.

Lab \# 5.
 Position versus Time.

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 19, Page 8

Lab \# 5.
 Finding velocities. Left Cart.

Left Cart
The initial velocity should be $0 \mathrm{~m} / \mathrm{s}$! What do you get? Provides info about the accuracy of the procedure.

- Series1

Lab \# 5.
 Finding velocities. Right Cart.

Right Cart

Lab \# 5.
 How to determine the velocities?

- Any time you have a large number of data points, use tools to process them quickly (e.g. there is no learning involved in using your calculator to find the average of 100 numbers).
- For professional graphs and curve fitting you should use Igor. This also will make it MUCH easier to determine the errors in the velocities!

Lab \# 5.
 Combining two analyses.

- The results of two independent analyses need to be combined.
- The two results can also be used to catch mistakes in one of the analyses.
- Example 1:
- $\mathrm{V}_{\text {left,f, }, 1}=-5.2 \pm 0.4 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v}_{\text {left,f,2 }}=-0.2 \pm 0.1 \mathrm{~m} / \mathrm{s}$

Calibration problems or reversal of cars?

- Example 2:
- $\mathrm{V}_{\text {left,f, }, 1}=-3.2 \pm 0.4 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v}_{\text {left }, f, 2}=-2.2 \pm 0.4 \mathrm{~m} / \mathrm{s}$

These two results look consistent and can be combined to obtain the following estimate for the final velocity of the left cart:

- $\mathrm{v}_{\text {left } \mathrm{f}}=-2.7 \pm 0.3 \mathrm{~m} / \mathrm{s}$

Lab \# 5. What do we learn?

- Based on the velocities determined, I will calculate the initial and final momenta and kinetic energies.
- The can deformations will be available on the WEB.
- We expect that the deformation of the cans is related to the loss of kinetic energy (since it takes energy to deform the cans).
- Models to consider:
- Loss of kinetic energy is proportional to the deformation of the cans.
- Loss of kinetic energy is proportional to the square of the deformation of the cans.

- Is linear momentum conserved?

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 19, Page 13

Analysis of experiment \# 5 . Models to be considered.

- Consider the following models:
- Can force $=F=$ const.

Work done $=-\Sigma\left(F x_{\mathrm{i}}\right)=$ ΔK.

- Can force $=k x$.

Work done $=-\Sigma\left(1 / 2 k x_{i}^{2}\right)=$ ΔK.

- A combination of these two forces:
- Force $=F$ if $x_{\mathrm{i}}<\mathrm{x}_{0}$
- Force $=k x$ if $x_{\mathrm{i}}>\mathrm{x}_{0}$

Analysis of experiment \# 5 . Timeline (more details during next lectures).

- 11/13: collisions in Spurrier Gym
- 11/20: analysis files available.
- 11/20: each student has determined his/her best estimate of the velocities before and after the collisions (analysis during regular lab periods).
- $11 / 22$: complete discussion and comparison of results with colliding partners and submit the final results (velocities and errors).
- $11 / 25$: we will compile the results, determine momenta and kinetic energies, and distribute the results.
- 12/4: office hours by lab TA/TIs to help with analysis and conclusions.
- 12/6: students submit lab report \# 5 .

Quiz lecture 19. PollEv.com/frankwolfs050

- The quiz today will have four questions.
- I will collect your answers electronically using the Poll Everywhere system.
- You have 30 seconds to answer each question.

Conservation of angular momentum.

- Consider the change in the angular momentum of a particle:

$$
\begin{aligned}
\frac{d \vec{L}}{d t} & =\frac{d}{d t}(\vec{r} \times \vec{p})=m\left(\vec{r} \times \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times \vec{v}\right)=m(\vec{r} \times \vec{a}+\vec{v} \times \vec{v})= \\
& =\vec{r} \times m \vec{a}=\vec{r} \times \sum \vec{F}=\sum \vec{\tau}
\end{aligned}
$$

- When the net torque is equal to 0 Nm :

$$
\sum \vec{\tau}=0=\frac{d \vec{L}}{d t} \Rightarrow \vec{L}=\mathrm{constant}
$$

- When we take the sum of all torques, the torques due to the internal forces cancel and the sum is equal to torque due to all external forces.

Conservation of angular momentum. Planetary motion.

- Consider planetary motion:

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p}=m v r \sin \theta \hat{z}= \\
& =m \frac{r v d t \sin \theta}{d t} \hat{z}=2 m \frac{d A}{d t} \hat{z}
\end{aligned}
$$

- The gravitational force is an internal force. In the absence of external forces, the angular momentum is conserved. We conclude hat

$$
\frac{d A}{d t}=\text { constant }
$$

- This is of course Kepler's Law.

Conservation of angular momentum.

- The connection between the angular momentum L and the torque τ

$$
\sum \vec{\tau}=\frac{d \vec{L}}{d t}
$$

is only true if L and τ are calculated with respect to the same reference point (which is at rest in an inertial reference frame).

- The relation is also true if L and τ are calculated with respect to the
 center of mass of the object (note: the center of mass can accelerate).

Conservation of angular momentum. A demonstration.

- Ignoring the mass of the bicycle wheel, the external torque will be close to zero if we use the center of the disk as our reference point.
- Since the external torque is zero, angular momentum thus should be conserved.
- I can change the orientation of the wheel by applying internal forces. In which direction will I need to spin to conserve angular momentum?

Angular momentum of rotating rigid objects.

- Consider a rigid object rotating around the z axis.
- The magnitude of the angular momentum of a part of a small section of the object is equal to

$$
\left|\vec{l}_{i}\right|=r_{i} p_{i} \hat{l}_{i}
$$

- Due to the symmetry of the object, we expect that the angular momentum of the object will be directed on the z axis. Thus, we only need to consider the z component of this angular momentum.

Note the direction of l_{i} !!!! (perpendicular to r_{i} and p_{i})

Angular momentum of rotating rigid objects.

- The z component of the angular momentum is

$$
l_{i, z}=r_{i} p_{i} \cos \theta=R_{i} p_{i}=m_{i} R_{i} v_{i}
$$

- The total angular momentum of the rotating object is the sum of the angular momenta of the individual components:

$$
L_{z}=\sum l_{i, z}=\sum m_{i} R_{i}^{2} \omega=I \omega
$$

- The total $\stackrel{i}{i}$ angular $\stackrel{i}{i}$ momentum is thus equal to

$$
\vec{L}=I \omega \hat{z}
$$

Conservation of angular momentum. Sample problem.

- A cockroach with mass m runs counterclockwise around the rim of a lazy Susan (a circular dish mounted on a vertical axle) of radius R and rotational inertia I with frictionless bearings. The cockroach's speed (with respect to the earth) is v, whereas the lazy Susan turns clockwise with angular speed ω_{0}. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan
 after the cockroach stops? (b) Is mechanical energy conserved?

Conservation of angular momentum. Sample problem.

- The initial angular momentum of the cockroach is

$$
\vec{L}_{c}=\vec{r}_{c} \times \vec{p}_{c}=R m v \hat{z}
$$

- The initial angular momentum of the lazy Susan is

$$
\vec{L}_{d}=-I \omega_{0} \hat{z}
$$

- The total initial angular momentum is thus equal to

$$
\vec{L}=\vec{L}_{c}+\vec{L}_{d}=R m v \hat{z}-I \omega_{0} \hat{z}=\left(R m v-I \omega_{0}\right) \hat{z}
$$

Conservation of angular momentum. Sample problem.

- When the cockroach stops, it will move in the same way as the rim of the lazy Susan. The forces that bring the cockroach to a halt are internal forces, and angular momentum is thus conserved.
- The moment of inertia of the lazy Susan + cockroach is equal to

$$
I_{f}=I+m R^{2}
$$

- The final angular velocity of the system is thus equal to

$$
\omega_{f}=\frac{L_{f}}{I_{f}}=\frac{R m v-I \omega_{0}}{I+m R^{2}}
$$

Conservation of angular momentum. Sample problem.

- The initial kinetic energy of the system is equal to

$$
K_{i}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega_{0}{ }^{2}=\frac{1}{2} \frac{\left(I v^{2} m+I^{2} \omega_{0}{ }^{2}+m^{2} R^{2} v^{2}+m R^{2} I \omega_{0}{ }^{2}\right)}{I+m R^{2}}
$$

Cockroach Lazy Susan

- The final kinetic energy of the system is equal to

$$
K_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2}\left(I+m R^{2}\right)\left(\frac{R m v-I \omega_{0}}{I+m R^{2}}\right)^{2}=\frac{1}{2} \frac{\left(R m v-I \omega_{0}\right)^{2}}{I+m R^{2}}
$$

- The change in the kinetic energy is thus equal to

$$
\Delta K=\frac{1}{2} \frac{-2 R m v I \omega_{0}-I v^{2} m-m R^{2} I \omega_{0}{ }^{2}}{I+m R^{2}}=-\frac{1}{2} \frac{m I}{I+m R^{2}}\left(v+R \omega_{0}\right)^{2}
$$

3 Minute 55 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 55 second intermission.
- You can:
- Stretch out.
- Talk to your neighbors.
- Ask me a quick question.
- Enjoy the fantastic music.
- Solve a WeBWorK problem.

Conservation and angular momentum at the atomic and nuclear level.

- Particles at the atomic and nuclear level have two different forms of angular momentum:
- Translational angular momentum: the angular momentum associated with the "orbital" motion of the particles. This angular momentum is also called the orbital angular momentum.
- Rotational angular momentum: the angular momentum associated with the rotation of the particles around their symmetry axis. This angular momentum is called the spin of the particle.
- The angular momentum at the atomic and nuclear level is quantized; its projection along the x, y, or z axis is an integer or half-integer multiple of $h / 2 \pi$.

Implications of quantization of angular momentum.

- Consider the "classical" picture of the motion of electrons in atoms.
- If the angular momentum is a integer multiple of $h / 2 \pi$, the orbit must be such that

$$
r p=N \frac{h}{2 \pi}=N \hbar
$$

- In order to carry out circular motion, the force on the electron must be equal to

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}=\frac{m v^{2}}{r}=\frac{p^{2}}{m r}
$$

Implications of quantization of angular momentum.

- Eliminating p from the force equation shows us that

$$
\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}=\frac{\left(\frac{N \hbar}{r}\right)^{2}}{m r}=\frac{N^{2} \hbar^{2}}{m r^{3}}
$$

- This equation can be used to determine the radius r :

$$
r=4 \pi \varepsilon_{0} \frac{N^{2} \hbar^{2}}{m e^{2}}
$$

Implications of quantization of angular momentum.

- The quantization of r results in a quantization of both the potential and the kinetic energy of the electron:

$$
\begin{aligned}
& U=-\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r}=-\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{m e^{4}}{N^{2} \hbar^{2}} \\
& K=\frac{1}{2} \frac{p^{2}}{m}=\frac{1}{2 m} \frac{N^{2} \hbar^{2}}{r^{2}}=\frac{1}{2 m} \frac{N^{2} \hbar^{2}}{\left(4 \pi \varepsilon_{0} \frac{N^{2} \hbar^{2}}{m e^{2}}\right)^{2}}=\frac{1}{2}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{m e^{4}}{N^{2} \hbar^{2}}
\end{aligned}
$$

- The total energy of the electron is thus equal to

$$
E=K+U=-\frac{1}{2}\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{m e^{4}}{N^{2} \hbar^{2}}=-\frac{13.6}{N^{2}} \mathrm{eV}
$$

Implications of quantization of angular momentum.

- The energy levels of an electron in the Hydrogen atom exactly match the levels predicted using this simple model, and the quantization of the energy levels is a direct consequence of the quantization of angular momentum.
- In addition to the orbital angular momentum of the electrons in the atom, they also poses spin. The projection of the spin of the electron on a particular axis will be either $+(1 / 2) h / 2 \pi$ or $-(1 / 2) h / 2 \pi$. It will never be zero. The electron is said to have be a spin $1 / 2$ particle.
- Many other particles, such as muons, neutrinos, and quarks, are spin 1/2 particles.

Implications of quantization of angular momentum.

- Since quarks are the building blocks of hadrons, we also expect that hadrons have a well-defined spin.
- Hadrons that contain three quarks can either be spin $1 / 2$ or spin $3 / 2$.
- Hadrons that contain two quarks can either be spin 0 or spin 1.
- The total spin of a particle limits how particles can be distributed across the various energy levels of the system.
- If the spin is a half integer, the particle is called a Fermion, and it must obey the Pauli exclusion principle (two fermions can not be in the exact same quantum state).
- If the spin is an integer, the particle is called a Boson, and it is not subject to the Pauli exclusion principle (there is not limit to the number of Bosons that can be in the exact same quantum state).

The building blocks of matter: combining quarks.

Baryons q99 and Antibaryons $\overline{\mathbf{q} 9 \mathrm{q}}$ Baryons are fermionic hadrons. There are about 120 types of baryons.					
Symbol	Name	Quark content	Electric charge	$\begin{gathered} \text { Mass } \\ \mathrm{GeV} / \mathrm{c}^{2} \end{gathered}$	Spin
p	proton	und	1	0.938	1/2
\bar{p}	antiproton	ūй	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	omega	SSS	-1	1.672	3/2

http://particleadventure.org/particleadventure/frameless/chart.html

The building blocks of matter: grouped according to spin.

FERMMONS			matter constituents spin = 1/2, 3/2, 5/2, ...		
Leptons			Quarks spin = 1/2		
Flavor	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge	Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
ν_{e} electron neutrino e electron	$\begin{aligned} & <1 \times 10^{-8} \\ & 0.000511 \end{aligned}$	0 -1	U up d down	$\begin{aligned} & 0.003 \\ & 0.006 \end{aligned}$	$2 / 3$ $-1 / 3$
$\boldsymbol{v}_{\boldsymbol{\mu}} \begin{gathered}\text { muon } \\ \text { neutrino }\end{gathered}$ $\boldsymbol{\mu}$ muon	$\begin{array}{r} <0.0002 \\ 0.106 \end{array}$	0 -1	C charm S strange	1.3 0.1	$2 / 3$ $-1 / 3$
$\begin{array}{ll} \boldsymbol{\nu}_{\boldsymbol{\tau}}^{\text {neutrino }} \\ \boldsymbol{\tau} & \text { tau } \end{array}$	$\begin{aligned} & <0.02 \\ & 1.7771 \end{aligned}$	0 -1	t top b bottom	175 4.3	$2 / 3$ $-1 / 3$

8OSONS			force carriers$\operatorname{spin}=0,1,2, \ldots$		
Unified Electroweak spin = 1			Strong (color) spin = 1		
Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge	Name	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
	0	0	$\underset{\text { gluon }}{\mathbf{g}}$	0	0
$\begin{gathered} \mathbf{W}^{-} \\ \mathbf{W}^{+} \\ \mathbf{Z}^{0} \end{gathered}$	$\begin{gathered} 80.4 \\ 80.4 \\ 91.187 \end{gathered}$	$\begin{gathered} -1 \\ +1 \\ 0 \end{gathered}$			

http://particleadventure.org/particleadventure/frameless/chart.html

Implications of quantization of angular momentum.

- A final remark (before talking about precession):

The spin of macroscopic objects will also be quantized, but the difference between different spin states is so small that it is impossible to observed effects of this quantization.

Precession.

- Consider a rotating rigid object spinning around its symmetry axis.
- The object carries a certain angular momentum L.
- Consider what will happen when the object is balanced on the tip of its axis (which makes an angle θ with the horizontal plane).
- The gravitational force, which is
 an external force, will generate a toques with respect of the tip of the axis.

Precession.

- The external torque is equal to

$$
|\vec{\tau}|=|\vec{r} \times \vec{F}|=|\vec{r}||\vec{F}| \sin \left(\frac{\pi}{2}+\theta\right)=M g r \cos \theta
$$

- The external torque causes a change in the angular momentum:

$$
d \vec{L}=\vec{\tau} d t
$$

- Thus:
- The change in the angular momentum points in the same direction as the
 direction of the torque.
mg
- The torque will thus change the direction of L but not its magnitude.

Precession.

- The effect of the torque can be visualized by looking at the motion of the projection of the angular momentum in the $x y$ plane.
- The angle of rotation of the projection of the angular momentum vector when the angular momentum changes by
 $d L$ is equal to

$$
d \phi=\frac{d L}{L \cos \theta}=\frac{M g r \cos \theta d t}{L \cos \theta}=\frac{M g r d t}{L}
$$

Precession.

- Since the projection of the angular momentum during the time interval $d t$ rotates by an angle $d \varphi$, we can calculate the rate of precession:

$$
\Omega=\frac{d \phi}{d t}=\frac{M g r}{L}=\frac{M g r}{I \omega}
$$

- We conclude the following:
- The rate of precessions does not depend on the angle θ.
- The rate of precession decreases when the angular momentum increases.

Up next: equilibrium.

