
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1

Physics 141.
Lecture 18.

- Concept Test
- Topics to be discussed today:
- A quick review of rotational variables, kinetic energy, and torque. \qquad
- Rolling motion.
- Angular Momentum. \qquad
\qquad
\qquad
Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 2
2

Physics 141.
Laboratory \# 5 .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics 141.

Course information.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4

Rotational variables. \qquad
A quick review.

- The variables that are used to
describe rotational motion are:
- Angular position θ
- Angular velocity $\omega=d \theta / d t$
- Angular acceleration $\alpha=d \omega / d t$
- The rotational variables are related to the linear variables
- Linear position $l=R \theta$
- Linear velocity $v=R \omega$
- Linear acceleration $a=R \alpha$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 5
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

The moment of inertia.

A quick review.

- The kinetic energy of a rotation
body is equal to

$$
K=\frac{1}{2} I \omega^{2}
$$

where I is the moment of inertia.

- For discrete mass distributions I is defined as

$$
I=\sum m_{i} r_{i}^{2}
$$

- For continuous mass distributions I is defined as

$$
I=\int r^{2} d m
$$

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 6

Parallel-axis theorem.

A quick review.

- Calculating the moment of inertial with respect to a symmetry axis of the object is in general easy.
- It is much harder to calculate the moment of inertia with respect to an axis that is not a symmetry axis.
- However, we can make a hard problem easier by using the parallel-axis theorem:

$$
I=I_{c m}+M h^{2}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 7
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7

Torque.
A quick review.

\qquad
\qquad
\qquad
\qquad
\qquad
linear motion rotational motion

共 F

8

Torque.
A quick review.

- The torque associated with a
force is a vector. It has a magnitude and a direction.
- The direction of the torque can be
found by using the right-hand
rule to evaluate $\boldsymbol{r} \times \boldsymbol{F}$.
- The direction of the torque is the direction of the angular acceleration.
- For extended objects, the total torque is equal to the vector sum of the torque associated with each "component" of this object.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 9

9

- Rolling motion is a combination of
translational and rotational motion.
- The kinetic energy of rolling motion has thus two contributions:

Rotation $K_{\text {translational }}=\frac{1}{2} M v_{c m}{ }^{2}$
Rotational kinetic energy:

$$
K_{\text {rotational }}=\frac{1}{2} I_{c m} \omega^{2}
$$

Assuming that the wheel does not slip we know that

$$
\omega=\frac{v_{c m}}{R}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 10
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

11

12
$E_{i}=m g H$

- Final mechanical energy:

$$
E_{f}=\frac{1}{2} m v_{c m}{ }^{2}+\frac{1}{2} I_{c m} \omega^{2}
$$

- Assuming no slipping, we can rewrite the final mechanical energy as

$$
E_{f}=\frac{1}{2}\left(m+\frac{I_{c m}}{R^{2}}\right) v_{c m}{ }^{2}
$$

- Conservation of energy implies:

$$
\frac{1}{2}\left(m+\frac{I_{c m}}{R^{2}}\right) v_{c m}^{2}=m g H
$$

$\frac{1}{2}\left(1+\frac{I_{c m}}{m R^{2}}\right) v_{c m}{ }^{2}=g H$
The smaller $I_{c m}$, the larger $v_{c m}$
at the bottom of the incline.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13

2 Minute 19 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 2 minute 19 second intermission. \qquad
- You can:
- Stretch out. \qquad
- Talk to your neighbors.
- Ask me a quick question.

Enjoy the fantastic music.

- Solve a WeBWorK problem. \qquad
\qquad
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 14
14

How different is a world with rotational motion?

- Consider the loop-to-loop. What
height h is required to make it to
the top of the loop?
- First consider the case without rotation:
- Initial mechanical energy $=m g h$. - Minimum velocity at the top of the loop is determined by requiring that $m v^{2} / R>m g$
or
$v^{2}>g R$
- The mechanical energy is satisfy
 the following condition
- Conservation of energy requires $h>(5 / 2) R$
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 16
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

How different is a world with rotational motion?

- What changes when the object
rotates?
- The minimum velocity at the top
of the loop will not change.
- The minimum translational kinetic energy at the top of the loop will not change.
- But in addition to translational
kinetic energy, there is now also
kinetic energy, there is now also rotational kinetic energy
- The minimum mechanical energy is at the top of the loop has thus increased.
- The required minimum height must thus have increased.

- OK, let's now calculate by how
much the minimum height has
$\begin{array}{cc}\begin{array}{c}\text { increased. } \\ \text { Frank L. H. Wolfs }\end{array} & \text { Department of Physics and Astronomy, University of Rochester, Lecture 18, Page } 17\end{array}$
17

How different is a world with rotational
motion?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
momentum is defined as the vector product ector and he linear momentum.

- Compare this definition with the definition of the torque.
- Angular momentum is a vector.
$\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$. angular momentum is
The angular momentum depends a bot the magnitude and the momentum vectors
andances the nserved

20
Angular momentum.
Circular motion.

- Consider an object carrying out
circular motion.
- For this type of motion, the position
vector will be perpendicular to the
momentum vector.
- The magnitude of the angular
momentum is equal to the product
of the magnitude of the radius r and
the linear momentum p :
$\quad L=m v r=m r^{2}(v / r)=I \omega$
- Note: compare this with $p=m v!$
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 21
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Angular momentum.

Linear motion.

- An object does not need to carry
out rotational motion to have an angular moment.
- Consider a particle P carrying out linear motion in the $x y$ plane.
- The angular momentum of P (with respect to the origin) is equal to

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p}=m r v \sin \theta \hat{z}= \\
& =m v r_{\perp} \hat{z}=p r_{\perp} \hat{z}
\end{aligned}
$$

and will be constant (if the linear momentum is constant)
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 22
22

Conservation of angular momentum.

- Consider the change in the angular momentum of a particle:

$$
\begin{aligned}
\frac{d \vec{L}}{d t} & =\frac{d}{d t}(\vec{r} \times \vec{p})=m\left(\vec{r} \times \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times \vec{v}\right)=m(\vec{r} \times \vec{a}+\vec{v} \times \vec{v})= \\
& =\vec{r} \times m \vec{a}=\vec{r} \times \sum \vec{F}=\sum \vec{\tau}
\end{aligned}
$$

- When the net torque is equal to 0 Nm :

$$
\sum \vec{\tau}=0=\frac{d \vec{L}}{d t} \Rightarrow \vec{L}=\text { constant }
$$

- When we take the sum of all torques, the torques due to the internal forces cancel and the sum is equal to torque due to all external forces.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 23 23

