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Physics 141.
Lecture 17.
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Physics 141.
Lecture 17.

• Course information.

• Topics to be discussed today (Chapter 11):
• Rotational Variables

• Rotational Kinetic Energy

• Torque
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Physics 141.
Course information.

• Lab report # 4 is due on Wednesday 11/6 at noon.

• Homework set # 7 is due on Friday 11/1 at noon.

• Homework set # 8 is due on Friday 11/8 at noon.

• Homework set # 9 is due on Friday 11/15 at noon.

• Exam # 3 is scheduled for Tuesday 11/19 at 8 am in Hoyt.  
It covers the material contained in Chapters 8 – 11.
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Experiment # 5.
Timeline (more details during next lectures).

• 11/11: collisions in Spurrier Gym
• 11/18: analysis files available.
• 11/25: each student has determined his/her best 

estimate of the velocities before and after the 
collisions (analysis during regular lab periods).

• 11/25: complete discussion and comparison of 
results with colliding partners and submit final 
results (velocities and errors) to professor 
Wolfs.

• 11/27: we will compile the results, determine 
momenta and kinetic energies, and distribute 
the results.

• 12/2: office hours by lab TA/TIs to help with 
analysis and conclusions.

• 12/6: students submit lab report # 5.
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We need empty soda cans!
I will provide full ones on 11/5.
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Rotational variables.

• The variables that are used to 
describe rotational motion are:

• Angular position 𝜃

• Angular velocity 𝜔 = 𝑑𝜃/𝑑𝑡

• Angular acceleration 𝛼 = 𝑑𝜔/𝑑𝑡

• The rotational variables are 
related to the linear variables:

• Linear position 𝑙 = 𝑅𝜃

• Linear velocity 𝑣 = 𝑅𝜔

• Linear acceleration 𝑎 = 𝑅𝛼
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Rotational variables.

• Things to consider when looking 
at the rotation of rigid objects 
around a fixed axis:

• Each part of the rigid object has 
the same angular velocity.

• Only those parts that are located 
at the same distance from the 
rotation axis have the same linear 
velocity.

• The linear velocity of parts of the 
rigid object increases with 
increasing distance from the 
rotation axis.
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Rotational variables.

• Note: the acceleration 𝑎! = 𝑟𝛼 is 
only one of the two component of 
the acceleration of point P.  

• The two components of the 
acceleration of point P are:

• The radial component: this 
component is always present since 
point P carried out circular motion 
around the axis of rotation.

• The tangential component: this 
component is present only when 
the angular acceleration is not 
equal to 0 rad/s2.
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Rotational variables.

Angular velocity and acceleration are vectors!  They have a magnitude and 
a direction.  The direction of 𝜔 is found using the right-hand rule.
The angular acceleration is parallel or anti-
parallel to the angular velocity:
 If 𝜔 increases: parallel
 If 𝜔 decreases: anti-parallel
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Rotational kinetic energy.

• Since the components of a rotating object have a non-zero (linear) 
velocity we can associate a kinetic energy with the rotational 
motion:

𝐾 =#
-

1
2𝑚-𝑣-. =

1
2#

-
𝑚- 𝜔𝑟- . =

1
2 #

-
𝑚-𝑟-. 𝜔. =

1
2𝐼𝜔

.

• The kinetic energy is proportional to the rotational velocity ω.  
Note: the equation is similar to the translational kinetic energy 
except that instead of being proportional to the the mass m of the 
object, the rotational kinetic energy is proportional to the moment 
of inertia I of the object (unit of I is kg m2):

𝐼 =#
-
𝑚-𝑟-.
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The moment of inertia I.
Calculating I.

• The moment of inertia of an 
objects depends on the mass 
distribution of object and on the 
location of the rotation axis.

• For discrete mass distribution it 
can be calculated as follows:

𝐼 = 0
"

𝑚"𝑟"
#

• For continuous mass distributions 
we need to integrate over the 
mass distribution:

𝐼 = 2 𝑟#𝑑𝑚
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Calculating the moment of inertia.
Sample problem.

• Consider a rod of length L and 
mass m.  What is the moment of 
inertia with respect to an axis 
through its center of mass?

• Consider a slice of the rod, with 
width dx, located a distance x 
from the rotation axis.  The mass 
dm of this slice is equal to

𝑑𝑚 =
𝑚
𝐿
𝑑𝑥

axis

L/2L/2

x

dx
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Calculating the moment of inertia.
Sample problem.

• The moment of inertia dI of this 
slice is equal to

𝑑𝐼 = 𝑥#𝑑𝑚 =
𝑚
𝐿
𝑥#𝑑𝑥

• The moment of inertia of the rod 
can be found by adding the 
contributions of all of the slices 
that make up the rod:

𝐼 = 2
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axis

L/2L/2

x

dx
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Calculating the moment of inertia.
Parallel-axis theorem.

• Calculating the moment of 
inertial with respect to a 
symmetry axis of the object is in 
general easy.

• It is much harder to calculate the 
moment of inertia with respect to 
an axis that is not a symmetry 
axis.

• However, we can make a hard 
problem easier by using the 
parallel-axis theorem:

𝐼 = 𝐼'( + 𝑀ℎ#

Easy

HardIcm
I
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Calculating the moment of inertia.
Sample problem.

• Consider a rod of length L and 
mass m.  What is the moment of 
inertia with respect to an axis 
through its left corner?

• We have determined the moment 
of inertia of this rod with respect 
to an axis through its center of 
mass.  We use the parallel-axis 
theorem to determine the moment 
of inertia with respect to the 
current axis:

𝐼 = 𝐼'( + 𝑚
𝐿
2

#

=
1
3
𝑚𝐿#

x

dx

axis

L
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3 Minute 2 Second Intermission. 

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 3 
minute 2 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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Torque.

• Consider a force F applied to an 
object that can only rotate.

• The force F can be decomposed 
into two two components:
• A radial component directed 

along the direction of the position 
vector r.  The magnitude of this 
component is 𝐹𝑐𝑜𝑠(𝜙) .  This 
component will not produce any 
motion.

• A tangential component, 
perpendicular to the direction of 
the position vector r. The 
magnitude of this component is 
𝐹𝑠𝑖𝑛(𝜙) . This component will 
result in rotational motion.

A
r

φ

F
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Torque.
• If a mass m is located at the position 

on which the force is acting (and we 
assume any other masses can be 
neglected), it will experience a linear 
acceleration equal to 𝐹𝑠𝑖𝑛 𝜙 /𝑚.

• The corresponding angular 
acceleration 𝛼 is equal to 

𝛼 = 𝐹𝑠𝑖𝑛(𝜙)/𝑚𝑟
• Since in rotational motion the moment 

of inertia plays an important role, we 
will rewrite the angular acceleration 
in terms of the moment of inertia:

𝛼 =
𝑟𝐹𝑠𝑖𝑛(𝜙)
𝑚𝑟#

=
𝑟𝐹𝑠𝑖𝑛(𝜙)

𝐼

A
r

φ

F
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Torque.

• Consider rewriting the previous 
equation in the following way:

𝑟𝐹𝑠𝑖𝑛 𝜙 = 𝐼𝛼
• The left-hand-side of this equation is 

called the torque 𝜏 of the force F:
𝜏 = 𝐼𝛼

• This equation looks similar to 
Newton’s second law for linear 
motion:

𝐹 = 𝑚𝑎
• Note:
 linear  rotational
   mass m moment I
   force F torque 𝜏

A
r

φ

F
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Torque.

• In general, the torque associated with 
a force F is equal to

𝜏 = 𝑟𝐹𝑠𝑖𝑛 𝜃 = 𝑟×�⃗�
• The arm of the force (also called the 

moment arm) is defined as 𝑟𝑠𝑖𝑛 𝜃 .  
The arm of the force is the 
perpendicular distance of the axis of 
rotation from the line of action of the 
force.

• If the arm of the force is 0, the torque 
is 0, and there will be no rotation.

• The maximum torque is achieved 
when 𝜃 = 90°.
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Rotational motion.
Sample problem.

• Consider a uniform disk with 
mass M and radius R.  The disk is 
mounted on a fixed axle.  A block 
with mass m hangs from a light 
cord that is wrapped around the 
rim of the disk.  Find the 
acceleration of the falling block, 
the angular acceleration of the 
disk, and the tension of the cord.

• Expectations:
• The linear acceleration should 

approach g when M approaches 
0 kg.

m

M, R
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Rotational motion.
Sample problem.

• Start with considering the forces 
and torques involved.

• Define the sign convention to be 
used.

• The block will move down and 
we choose the positive y axis in 
the direction of the linear 
acceleration.

• The net force on mass m is equal 
to

𝑚𝑎 = 𝑚𝑔 − 𝑇

T

mg

a

T

R
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Rotational motion.
Sample problem.

• The net torque on the pulley is equal 
to

𝜏 = 𝑅𝑇

• The resulting angular acceleration is 
equal to

𝛼 =
𝜏
𝐼
=

𝑅𝑇
1
2𝑀𝑅

#
=
2𝑇
𝑀𝑅

• Assuming the cord is not slipping we 
can determine the linear acceleration:

𝑎 = 𝛼𝑅 = 2
𝑇
𝑀

T

mg

a

T

R
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Rotational motion.
Sample problem.

• We now have two expressions for 
a:

𝑎 = 2
𝑇
𝑀

𝑎 =
𝑚𝑔 − 𝑇
𝑚

= 𝑔 −
𝑇
𝑚

• Solving these equations we find:

𝑇 =
𝑀

𝑀 + 2𝑚
𝑚𝑔

𝑎 =
2𝑚

𝑀 + 2𝑚
𝑔

T

mg

a

T

R

Note: a = g when M = 0 kg!!!
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Done for today!

Landing at Amsterdam Airport.
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