Physics 141. Lecture 17.

Physics 141. Lecture 17.

- Course information.
- Topics to be discussed today (Chapter 11):
- Rotational Variables
- Rotational Kinetic Energy
- Torque

Physics 141. Course information.

- Lab report \# 4 is due on Wednesday $11 / 8$ at noon.
- Homework set \# 7 is due on Friday 11/10 at noon.
- Homework set \# 8 is due on Friday $11 / 17$ at noon.
- Homework set \# 9 is due on Wednesday 11/22 at noon.

Lab \# 5, November 13. Collisions!

Total number of collisions $=60-0-$. Number of collisions per student $=2-3$

Please drink your sparkling water and rinse your cans!

One way to deal with soda. Physics 141 Fall 2012.

Analysis of experiment \# 5 . Timeline (more details during next lectures).

- 11/13: collisions in Spurrier Gym
- 11/20: analysis files available.
- 11/20: each student has determined his/her best estimate of the velocities before and after the collisions (analysis during regular lab periods).
- $11 / 22$: complete discussion and comparison of results with colliding partners and submit final results (velocities and errors) to professor Wolfs.
- $11 / 25$: we will compiles the results, determine momenta and kinetic energies, and distribute the results.
- 12/4: office hours by lab TA/TIs to help with analysis and conclusions.

- 12/6: students submit lab report \# 5.

Rotational variables.

- The variables that are used to describe rotational motion are:
- Angular position θ
- Angular velocity $\omega=d \theta / d t$
- Angular acceleration $\alpha=d \omega / d t$
- The rotational variables are related to the linear variables:
- Linear position $l=R \theta$

- Linear velocity $v=R \omega$
- Linear acceleration $a=R \alpha$

Rotational variables.

- Things to consider when looking at the rotation of rigid objects around a fixed axis:
- Each part of the rigid object has the same angular velocity.
- Only those parts that are located at the same distance from the rotation axis have the same linear velocity.
- The linear velocity of parts of the
 rigid object increases with increasing distance from the rotation axis.

Rotational variables.

- Note: the acceleration $a_{\mathrm{t}}=r \alpha$ is only one of the two component of the acceleration of point P.
- The two components of the acceleration of point P are:
- The radial component: this component is always present since point P carried out circular motion around the axis of rotation.
- The tangential component: this
 component is present only when the angular acceleration is not equal to $0 \mathrm{rad} / \mathrm{s}^{2}$.

Rotational variables.

Angular velocity and acceleration are vectors! They have a magnitude and a direction. The direction of ω is found using the right-hand rule. The angular acceleration is parallel or antiparallel to the angular velocity:

If ω increases: parallel
If ω decreases: anti-parallel

(a)

(b)

Rotational kinetic energy.

- Since the components of a rotating object have a non-zero (linear) velocity we can associate a kinetic energy with the rotational motion:

$$
K=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} \sum_{i} m_{i}\left(\omega r_{i}\right)^{2}=\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2}
$$

- The kinetic energy is proportional to the rotational velocity ω. Note: the equation is similar to the translational kinetic energy ($1 / 2 m v^{2}$) except that instead of being proportional to the the mass m of the object, the rotational kinetic energy is proportional to the moment of inertia I of the object:

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

Note: units of $I: \mathbf{k g ~ m}{ }^{\mathbf{2}}$

The moment of inertia I. Calculating I.

- The moment of inertia of an objects depends on the mass distribution of object and on the location of the rotation axis.
- For discrete mass distribution it can be calculated as follows:

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

- For continuous mass distributions we need to integrate over the mass distribution:

$$
I=\int r^{2} d m
$$

Calculating the moment of inertia. Sample problem.

- Consider a rod of length L and mass m. What is the moment of inertia with respect to an axis through its center of mass?
- Consider a slice of the rod, with width $d x$, located a distance x from the rotation axis. The mass
 $d m$ of this slice is equal to

$$
d m=\frac{m}{L} d x
$$

Calculating the moment of inertia. Sample problem.

- The moment of inertia $d I$ of this slice is equal to

$$
d I=x^{2} d m=\frac{m}{L} x^{2} d x
$$

- The moment of inertia of the rod can be found by adding the contributions of all of the slices
 that make up the rod:

$$
I=\int_{-L / 2}^{L / 2} \frac{m}{L} x^{2} d x=\frac{m}{3 L}\left[\left(\frac{L}{2}\right)^{3}-\left(-\frac{L}{2}\right)^{3}\right]=\frac{1}{12} m L^{2}
$$

Calculating the moment of inertia. Parallel-axis theorem.

- Calculating the moment of inertial with respect to a symmetry axis of the object is in general easy.
- It is much harder to calculate the moment of inertia with respect to an axis that is not a symmetry axis.
- However, we can make a hard problem easier by using the parallel-axis theorem:

$$
I=I_{c m}+M h^{2}
$$

Calculating the moment of inertia. Sample problem.

- Consider a rod of length L and mass m. What is the moment of inertia with respect to an axis through its left corner?
- We have determined the moment of inertia of this rod with respect to an axis through its center of mass. We use the parallel-axis
 theorem to determine the moment of inertia with respect to the current axis:

$$
I=I_{c m}+m\left(\frac{L}{2}\right)^{2}=\frac{1}{12} m L^{2}+\frac{1}{4} m L^{2}=\frac{1}{3} m L^{2}
$$

3 Minute 2 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 2 second intermission.
- You can:
- Stretch out.
- Talk to your neighbors.
- Ask me a quick question.
- Enjoy the fantastic music.
- Solve a WeBWorK problem.

Torque.

- Consider a force F applied to an object that can only rotate.
- The force F can be decomposed into two two components:
- A radial component directed along the direction of the position vector r. The magnitude of this component is $F \cos \theta$. This component will not produce any motion.
- A tangential component, perpendicular to the direction of the position vector r. The
 magnitude of this component is $F \sin \theta$. This component will result in rotational motion.

Torque.

- If a mass m is located at the position on which the force is acting (and we assume any other masses can be neglected), it will experience a linear acceleration equal to $F \sin \varphi / m$.
- The corresponding angular acceleration α is equal to

$$
\alpha=\frac{F \sin \phi}{m r}
$$

- Since in rotation motion the moment of inertia plays an important role, we will rewrite the angular acceleration
 in terms of the moment of inertia:

$$
\alpha=\frac{r F \sin \phi}{m r^{2}}=\frac{r F \sin \phi}{I}
$$

Torque.

- Consider rewriting the previous equation in the following way:

$$
r F \sin \phi=I \alpha
$$

- The left-hand-side of this equation is called the torque τ of the force F :

$$
\tau=I \alpha
$$

- This equation looks similar to Newton's second law for linear motion:

$$
F=m a
$$

- Note:
linear
rotational

mass m	moment I
force F	torque τ

Torque.

- In general the torque associated with a force F is equal to

$$
|\vec{\tau}|=r F \sin \theta=|\vec{r} \times \vec{F}|
$$

- The arm of the force (also called the moment arm) is defined as $r \sin \theta$. The arm of the force is the perpendicular distance of the axis of rotation from the line of action of the force.
- If the arm of the force is 0 , the torque is 0 , and there will be no rotation.
- The maximum torque is achieved

(a)

(b) when the angle θ is 90°.

Rotational motion. Sample problem.

- Consider a uniform disk with mass M and radius R. The disk is mounted on a fixed axle. A block with mass m hangs from a light cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension of the cord.
- Expectations:
- The linear acceleration should approach g when M approaches
 0 kg .

Rotational motion. Sample problem.

- Start with considering the forces and torques involved.
- Define the sign convention to be used.
- The block will move down and we choose the positive and we choose the positive y axis in the direction of the linear acceleration.
- The net force on mass m is equal

$$
m a=m g-T
$$

Rotational motion. Sample problem.

- The net torque on the pulley is equal to

$$
\tau=R T
$$

- The resulting angular acceleration is equal to

$$
\alpha=\frac{\tau}{I}=\frac{R T}{\frac{1}{2} M R^{2}}=\frac{2 T}{M R}
$$

- Assuming the cord is not slipping we

 can determine the linear acceleration:

$$
a=\alpha R=2 \frac{T}{M}
$$

Rotational motion. Sample problem.

- We now have two expressions for
a:

$$
\begin{aligned}
& a=2 \frac{T}{M} \\
& a=\frac{m g-T}{m}=g-\frac{T}{m}
\end{aligned}
$$

- Solving these equations we find:

$$
\begin{aligned}
& T=\frac{M}{M+2 m} m g \\
& a=\frac{2 m}{M+2 m} g
\end{aligned}
$$

Note: $a=g$ when $M=0 \mathrm{~kg}!!!$

Done for today!

Landing at Amsterdam Airport.

