Physics 141. Lecture 13.

There are multiple-particle systems in your future.

\qquad
\qquad
\qquad
\qquad
\qquad
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 1
1

Physics 141.
Lecture 13

- Course Information:
- Homework set \# 6
- Laboratory experiment \# 3
- Complete our discussion of Chapter 8:
- A quick review of topics discussed on last time:

Vibsion absorption spectra.

- Vibrational energy levels.
- Incoherent and coherent emission of light - the laser. \qquad
- Start our discussion of Chapter 9:
- Center of mass.
- Motion of complex objects.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 2
2

Physics 141.
Course information.

- Homework:
- Homework set 6 will be WebWork only and will be due Friday 11/3 at 12 pm . \qquad
- Laboratory:
- Laboratory report \# 3 will count twice as much as reports \# 2, which
counted twice as much as report \# 1. Make sure you put into practice
what you learned from reports \# 1 and \# 2
- Laboratory report \# 3 is due on Friday 10/27 at noon.
- No recitations and office hours this week.

Quiz lecture 013. PollEv.com/frankwolfs050

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad question 1 , followed by 30 s for question 2, etc.).

4

Quantization of energy.
A quick review: emission patterns.

- Light is emitted when an excited
atom makes a transition to a
lower energy level.
- Since the light emitted during
these transitions have discrete
wavelengths, the energy levels of
atoms must be quantized.
- The energy levels serve as a
signature (finger print) for the
atom, and the emission pattern
can be used to identify the atom.
Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 5
\qquad
- Light is emitted when an excited
- Since the light emitted during hese transitions have discrete wavelengths, the energy levels of atoms must be quantized.
- The energy levels serve as a atom, and the emission pattern Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 5
\qquad
\qquad
\qquad
\qquad
\qquad

5

Quantization of energy.
A quick review: absorption patterns.

- When an atom is in its ground state, it can only absorb photons of specific frequencies.
- Only photons with an energy that exactly match possible transitions between energy levels in the atom are absorbed by the atom.
- The absorption spectrum can also be used as a signature of the atoms.

[^0]Quantization of energy. A quick review: molecular vibrational energy.

- When we measure the vibrational
energy levels for a two-atomic
molecule we find that at low
energies the vibrational model
works fine (nearly uniform
energy spacing).
- At higher energies, the potential
well starts to deviate from a
harmonic oscillator well, and the
vibrational energy levels are no
longer uniformly spaced.
Drank L. H. Wolfs

7

Quantization of energy.

A quick review: molecular rotational energy.

- Molecules can also carry
rotational energy.
- The rotational energy of a
molecule is also quantized, but
the spacing between levels
increases with increasing
excitation energy.
- The rotational energy is found to
be equal to
$\quad E_{l}=\frac{1}{2 I} l(l+1) \hbar^{2}$

E_{5}
where l is an integer $(0,1, \ldots)$
and I is the moment of inertia
(depends on mass and shape)
Department of Physics and Astronomy, University of Rochester, Lecture 13 , Page 8

Frank

8

| | Completing Chapter 8. |
| :--- | :--- | :--- |
| | Applications: the laser. |

9

Completing Chapter 8. Applications: the laser.

- The atoms used in lasers have
long lived excited states.
- Although eventually the atom
will make a transition to the One photon
ground state, and emit the light a
photon with energy E, this
transition can be "stimulated"
when a photon with exactly the
same energy E interacts with the
excited atom.
- This type of emission is called
stimulated emission, and the
second photon is in phase with
the first photon (coherent
L. Hhotons).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

Completing Chapter 8.
 Applications: the laser.

- If most of the atoms in the system are in their ground state, it is very likely that the emitted photons will be reabsorbed.

- In order for the photons to escape, a mechanism needs to be developed which:
- Makes it unlikely to find atoms in their ground state.
Ensures that most atoms are in the long-lived excited state.
- The mechanism that is used to
d Astronomy, University of Rochester, Lecture 13, Page 11
\qquad
\qquad
reduce the number of atoms in
their ground state is called pumping.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 11
11

Lasers.
Principle of operation.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13
3 Minute 56 Second Intermission.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

The center of mass.

- Up to now we have ignored the shape of the objects we are studying.
Objects that are not point-like appear to carry out more complicated motions than pointlike objects (e.g. the object may be rotating during its motion).
- We will find that we can use whatever we have learned about motion of point-like objects if we consider the motion of the center-
of-mass of the extended object.
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 15

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

16

But what is the center of mass

 and where is it located?- Let's look at this particular
system.
- Since we are free to choose our
coordinate system in a way
convenient to us, we choose it
such that the origin coincides
with the location of mass m_{1}.
- The center of mass is located at

$$
x_{c m}=\frac{m_{2} d}{m_{1}+m_{2}}
$$

Note: the center of mass does not
need to be located at a position
where there is mass!
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 17
17

But what is the center of mass and where is it located?

- In two or three dimensions the calculation of the center of mass is very similar, except that we need to use vectors.
- If we are not dealing with discreet point masses we need to replace the sum with an integral.

$$
\overrightarrow{\mathbf{r}}_{c m}=\frac{1}{M} \int_{V} \overrightarrow{\mathbf{r}} d m
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 18

But what is the center of mass and where is it located?

- We can also calculate the position
of the center of mass of a two or
three-dimensional object by

calculating its | components |
| :--- |
| separately: |

$\quad x_{c m}=\frac{1}{M} \sum_{i} m_{i} x_{i}$
$\quad y_{c m}=\frac{1}{M} \sum_{i} m_{i} y_{i}$
Frank L. H. Wolfs $\sum_{i} m_{i} z_{i}$

- Note: the center of mass may be
located outside the object.
Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 19
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

Calculating the position of the center of mass. An example.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

Calculating the position of the center of mass.

An example.

- The center of mass of the solid disk can be expressed in terms of the disk X and the disk D we used to fill the hole in disk X :

$$
x_{c m, C}=\frac{x_{c m, X} m_{X}+x_{c m, D} m_{D}}{m_{X}+m_{D}}=0
$$

- This equation can be rewritten as

$$
x_{c m, X}=-\frac{x_{c m, D} m_{D}}{m_{X}}=\frac{R m_{D}}{m_{X}}
$$

- Where we have used the fact that the center of mass of disk D is
 located at $(-R / 2,0)$.
Frank L. H. Thus Woifs $x_{\mathrm{cm}, \mathrm{X}}=$ R/3. ${ }_{\text {Department of Physics and Astronomy, University of Rochester, Lecture 13, Page } 21}$

Motion of the center of mass.

Non-relativistic limit.

- To examine the motion of the center of mass we start with its position and then determine its velocity and acceleration:

$$
\begin{aligned}
& M r_{r_{m}}=\sum_{i} m \bar{r}_{i} \\
& M v_{c_{m}}=\sum_{i} m_{i} \bar{v}_{i} \\
& M \bar{a}_{c m}=\sum_{m} m_{i} \bar{a}_{i}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

Motion of the center of mass.
Non-relativistic limit.

- The expression for $M a_{\mathrm{cm}}$ can be rewritten in terms of the forces on the individual components:

$$
M \vec{a}_{c m}=\frac{d}{d t}\left(M \vec{v}_{c n}\right)=\frac{d \vec{P}_{c m}}{d t}=\sum_{i} \vec{F}_{i}=\vec{F}_{n e t, e t t}
$$

- We conclude that the motion of the center of mass is only determined by the external forces. Forces exerted by one part of the system on other parts of the system are called internal forces. According to Newton's third law, the sum of all internal forces cancel out (for each interaction there are two forces acting on two parts: they are equal in magnitude but pointing in an opposite direction and cancel if we take the vector sum of all internal forces).
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 23
23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Conservation of linear momentum. Applications.

\qquad
\qquad
\qquad
\qquad
\qquad

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 26 \qquad
26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 13, Page 6

