
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

Good to know for Exam \# 2. \qquad
The oldest airline in the world: 10/7/1919.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2
Now you know the rest of the story.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline.	
- Cours - Exa - Lab - Hon - Quiz. - Comp - Rev - Usi	rmation: he discussion of Chapter 6: the definition of potential energy. energy principle when non-conservative forces are present.
Frank L. H. Wolfs	Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 4

\qquad
\qquad

- Exam \# 1.
- Homework. \qquad
Complete the discussion of Chapter 6:
- Review of the definition of potential energy
- Using the energy principle when non-conservative forces are present.
\qquad
\qquad
\qquad
4

Course Information.

- Exam \# 1:

Any changes in the grading of the exam can only be made me.
Please provide today (Thursday 10/5) with your exam and a note describing why you feel you deserve more points.

- Laboratory:
- Laboratory experiment \# 3 is scheduled for Monday October 9.
- Homework:
- Homework set \#4 is due on Friday 10/6 at 12 pm (noon).
- Homework set \#5 is due on Friday 10/13 at 12 pm (noon).

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 5

5

\qquad

7

The energy principle $(Q=0)$.

Multi-particle systems.

- When we apply our equation for the change in the energy of our system, we have to realize that how we treat forces depends on how we define out system.

$$
\sum_{i} \Delta E_{i}+\left(-W_{\text {int }}\right)=\sum_{i} \Delta E_{i}+\Delta U=W_{\text {ext }} \quad \begin{aligned}
& \text { Change in energy } \\
& \text { of our system }
\end{aligned}
$$

- Consider an object in free fall close to the surface of the Earth:
- If our system consists of the object and the Earth, the gravitational force is an internal force and we will include it in the calculation of the potential energy of our system. Since the relative position of the object and the Earth will change, the change in U will not be equal to

0.

- If our system consists of the object only, the gravitational force is an external force and will be included in our calculation of the work associated with external forces.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 8
8

Calculating the potential energy U.
One dimension.

- Per definition, the change in potential energy is related to the work done by the force:

$$
\Delta U=-W=-\int_{x_{0}}^{x} F(x) d x
$$

- The potential energy at x can thus be related to the potential energy at a point x_{0} :

$$
\begin{array}{cc}
U(x)=U\left(x_{0}\right)+\Delta U=\underbrace{U\left(x_{0}\right)}_{0}-\int_{x_{0}}^{x} F(x) d x \\
\begin{array}{c}
U(x) \text { only uniquely defined if } \\
\text { integral is path independent. }
\end{array} \\
\begin{array}{c}
\text { Refential at reference position. }
\end{array} \\
\text { Department of Physics and Astronomy, University of Rochester, Lecture i0, Page } 9
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the potential energy.

Path dependence.

- The work done must only depend
on the start and end point, and not
on the path followed.
- This is not true for all forces. For
example, the work done by the
friction force is always negative.
If the friction force is constant in
magnitude, the work done by the
friction force depends on the path
length and is thus path dependent.
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 11
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

| Calculating the potential energy.
 Conservative and non-conservative forces. |
| :--- | :--- | | - If the work is independent of the |
| :--- |
| path, the work around a closed |
| path will be equal to 0 J. |
| - A force for which the work is |
| independent of the path is called |
| a conservative force. |
| - A force for which the work |
| depends on the path is called a |
| non-conservative force. |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
13

Calculating the potential energy. \qquad The potential energy of a spring.

- Consider the work done by a
spring when we move a block
from its equilibrium position to a position $x=A$.
During this displacement, the force is pointed in a direction opposite to the displacement, and the work done is negative.
- The total work done is equal to

$$
W=-\int_{0}^{A}(k x) d x=-\frac{1}{2} k A^{2}
$$

- The potential energy of the spring is thus $U(x)=-W=(1 / 2) k x^{2}$

\qquad
\qquad
\qquad
\qquad energy at this position is 0 J
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 14 \qquad
14

Calculating the potential energy. \qquad
The gravitational potential energy.
In our discussion so far we have
taken the gravitational potential energy to be equal to $m g h$

- This is approximately correct when we are very close to the surface of the earth, but not correct when we are a few miles from the surface of the earth
- The work done by the gravitational force when we move an object from position 1 to position 2 is equal to

Note: reference position is at infinity. The potential energy at this position is 0 J .

[^0]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

Calculating the potential energy. The electric potential energy.	
- The electric force between two charged particles is equal to	
$\vec{F}_{c}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{2}}{r_{2}} \hat{r}_{2}$	
- The electric potential energy required to assemble a pair of charges can be found in the same way we determine the gravitational potential energy. We find that	
$U_{e}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{12} q_{2}}{r_{12}}$	Note: reference position is at infinity. The potential energy at this position is 0 J .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The potential energy is directly related to the force acting on the object.

- If we know the force, we can
calculate the change ΔU : calculate the change ΔU

$$
\Delta U=-W=-\int_{x_{0}}^{x} F(x) d x
$$

If we know the change $d U$, we can calculate the force:

$$
F(x)=-\frac{d U}{d x}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 19
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad and no motion from region 1
permitted

20

Potential energy distributions. The gravitational potential energy.		
- Consider an object on the surface of the		
earth with a kinetic energy $K\left(r_{\mathrm{E}}\right)$. The		
total energy of the object is $U\left(r_{\mathrm{E}}\right)+$		
$K\left(r_{\mathrm{E}}\right)$.		
- If $U(r \mathrm{E})+K(r \mathrm{E})<0$ then there will be a		
distance r where $U(r)=U(r \mathrm{E})+K(r \mathrm{E})$.		
At that distance $K(r)=0 \mathrm{~J}$. The object		
can not escape!		

\qquad
\qquad
\qquad
22

Potential energy distributions. Predicting stability.	
- The force between a proton and a nucleus is complicated: - At large distances, the force is dominated by the repulsive electric force (same sign charges). - At small distances, the force is dominated nuclear force. - When we compare the total energy of the individual constituents with the total energy of the nucleus, we find that the energy of the nucleus is less \Rightarrow the system is stable against decay.	
Frank L.t. Wolls Department of Physis and	Univesity of fochester, Le

\qquad
\qquad
\qquad dominated by the repulsiv At small distances, the force dominated by the attractive nuclear force.
e compare the total of the individua onstituents with the total energy of the nucleus, we find that the of the nucleus is less $=$ decay.

Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 23
\qquad

3
Calculating the potential energy.
The atomic potential energy.

- The force between neutral atoms
is largely governed by the electric
force between their constituents.
- The net force has contributions
due to the repulsive force
between the protons and between
the electrons in each atom, and
the attractive force between the
protons in one nucleus and the
electrons in the other nucleus
(and vice versa).
- The potential energy between two
neutral atoms is parameterized in
terms of the Morse function.
Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 24

Frank L in Wolfs

Calculating the potential energy. The atomic potential energy.	
- The Morse potential energy distribution is in approximate agreement with the results of measurements of the inter-atomic force. - The region surrounding the equilibrium position may be approximated with the potential distribution of a harmonic oscillator (e.g. a spring). - For small oscillations around the equilibrium position, the spring model will work nicely!	Note: this will be discussed in more detail in chapter 7.
Frank L. H. Wolfs Department of Physics and	my, University of Rochester, Lecture 10, Page 25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

26

[^0]: Frank L. H. Wolfs
 Department of Physics and Astronomy, University of Rochester, Lecture 10, Page 15

