Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1

1

2

Outline. Course information: Exam # 1 Quiz. Continuation of the discussion of Chapter 4: Simple harmonic motion. Damped harmonic motion. Driven harmonic motion.

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 3

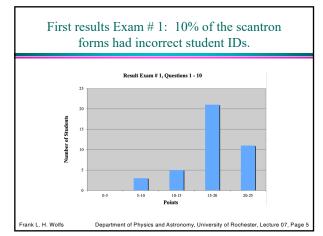
3

Frank L. H. Wolfs

Exam 1.

- The results of exam # 1 will be distributed via email on Monday.
- The exam will be returned next week during recitations.
 If you do only one thing: compare the points you see on the blue booklets with the points in your email. It is easy to make a mistake during data entry.
- Compare your solutions with the posted solutions.
- If you are unhappy with how your exam was graded:
 Write a note explaining why you feel you deserve more points.
 Hand you note and your exam booklet(s) to me before or during class on October 1.
 Do not ask your TA to modify your grade.

4



5

First results Exam # 1: 50% of all students failed problem 2. Problem 2 (2.5 points) Answer on Scantron form You measure the length of a plate using a ruler, as shown in Fig. 2. 15 m 5 m 10 m Figure 2: The measurement of the length of a plate. What is your best estimate of the length of the plate (in units of meters)? Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 6 Frank L. H. Wolfs

6

Quiz lecture 07. PollEv.com/frankwolfs050

- The quiz today will have three questions.
- I will collect your answers electronically using the Poll Everywhere system.
- The answers for each question will be entered in sequence (first 60 s for question 1, followed by 60 s for question 2, etc.).

7

A quick review of the material discussed in Lecture 6.

- We can visualize a solid as a collection of atoms of mass m, interconnected by springs.
- The atoms are not at rest in a solid, but continuously vibrate around an equilibrium position.
- The temperature of the solid is a measure of the kinetic energy associated with the motion of the atoms.
- This simple model can explain many



8

The spring-mass system.

- The key to the understanding of the atomic model of matter is the understanding of the spring-like interaction between the atoms.
- Since matter will never be at the absolute zero temperature, the atoms will have an non-zero average kinetic energy (proportional to the temperature of the matter).
- Since the atoms will move, the "springs" in our model will carry out a dynamic motion which we will need to understand in more detail.

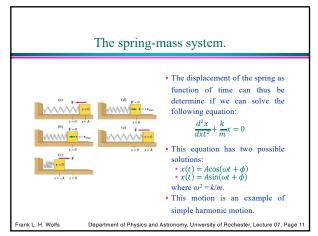
Frank L. H. Wolfs

The spring-mass system. • For the spring force we know: • Its direction is opposite to the displacement. • Its magnitude is k |x|. • Consider the force acting on mass m when it is located at position x: $x = -A, \quad x = 0, \quad x = A$

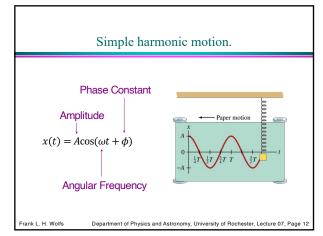
- F = -kx
- But we also know that F = ma
- Thus $a = \frac{d^2x}{dxt^2} = -\frac{k}{m}x$

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1

10



11



Simple harmonic motion.

- Instead of the angular frequency ω the motion can also be described in terms of its period T or its frequency ν.
 The period T is the time required to complete one oscillation:

$$x(t) = x(t+T)$$

$$A\cos(\omega t + \phi) = A\cos(\omega t + \omega T + \phi)$$

- In order for this to be true, we must require that $\omega T = 2\pi$. The period T is thus equal to $2\pi/\omega$.
- The frequency ν is the number of oscillations carried out per second (v=1/T). The unit of frequency is the Hertz (Hz). Per definition, $1 \text{ Hz} = 1 \text{ s}^{-1}$. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 13

13

Simple harmonic motion. What forces are required?

- Consider we observe simple harmonic motion.
- The observation of the equation of motion can be used to determine the nature of the force that generates this type of motion.
- In order to do this, we need to determine the acceleration of the object carrying out the harmonic motion:

$$x(t) = A\cos(\omega t + \phi)$$

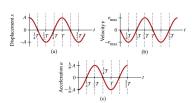
$$v(t) = \frac{dx}{dt} = -\omega A\sin(\omega t + \phi)$$

$$a(t) = \frac{dv}{dt} = -\omega^2 A\cos(\omega t + \phi) = -\omega^2 x(t)$$

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 14

14

Simple harmonic motion. What forces are required?



Note: maxima in displacement correlate with minima in acceleration.

Simple harmonic motion. What forces are required?

• Using Newton's second law we can determine the force responsible for the harmonic motion:

$$F = ma = -m\omega^2 x$$

• We conclude:

Simple harmonic motion is the motion executed by a particle of mass m, subject to a force F that is proportional to the displacement of the particle, but opposite in sign.

• Any force that satisfies this criterion can produce simple harmonic motion. If more than one force is present, you need to examine the net force, and make sure that the net force is proportional to the displacements, but opposite in sign.

16

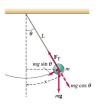
Simple harmonic motion (SHM). The simple pendulum.

- Consider a simple pendulum.
 A simple pendulum is a pendulum
 - A simple pendulum is a pendulum for which all the mass is located at a single point at the end of a massless string.

 There are two forces acting on the mass: the tension *T* and the

 - mass: the tension T and the gravitational force mg.

 The tension T cancels the radial component of the gravitational force when |R| and $|\theta|$ reach their maxima. At all other positions, the net radial force is pointing in the same direction as the tension T and provides the required centrinetal acceleration. centripetal acceleration.



Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 17

17

Simple harmonic motion (SHM). The simple pendulum.

The net force acting on he mass is directed perpendicular to the string and is equal to

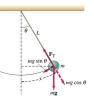
$$F = -mg\sin\theta$$

The minus sign indicates that the force is directed opposite to the angular displacement.

When the angle θ is small, we can approximate $\sin \theta$ by θ :

$$F \approx -mg\theta = -mg\frac{x}{L}$$

Note: the force is again proportional displacement.



Simple harmonic motion (SHM). The simple pendulum.

The equation of motion for the pendulum is thus

$$F = m \frac{d^2xy}{dt^2} = -mg \int_{t_0}^{x}$$

$$\frac{d^2xy}{dt^2} = -\frac{g}{l}x$$

- The equation of motion is the same as the equation of motion for a SHM, and the pendulum will thus carry out SHM with an angular frequency ω = √g/L.
 The period T of the pendulum is

19

Simple harmonic motion (SHM). The torsion pendulum.

- What is the angular frequency of the SHM of a torsion pendulum:
 - When the base is rotated, it twists the wire and the wire generates a torque which is proportional to the the twist angle:

$$\tau = -K\theta$$

The torque generates an angular acceleration α :

$$\alpha = \frac{d^2\theta}{dt^2} = \frac{\tau}{I} = -\frac{K}{I}\theta$$

The resulting motion is harmonic motion with an angular frequency $\omega = \sqrt{K/I}$.

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 20

20

3 Minute 35 Second Intermission

Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 35 second intermission.

Wire

O Equilibrium

- You can:

 Stretch out.

 Talk to your neighbors.

 Ask me a quick question.

 Enjoy the fantastic music.

 Go asleep, as long as you wake up in 3 minutes and 35 seconds.

Frank L. H. Wolfs

Damped harmonic motion.

• Consider what happens when in addition to the restoring force a damping force (such as the drag force) is acting on the system:

$$F = -kx - b \frac{dx}{dt}$$

• The equation of motion is now given by:

$$\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$$

22

Damped harmonic motion.

• The general solution of this equation of motion is

$$x(t) = Ae^{i\omega t}$$

• If we substitute this solution into the equation of motion we find

$$-\omega^2 A e^{i\omega t} + i\omega \frac{b}{m} A e^{i\omega t} + \frac{k}{m} A e^{i\omega t} = 0$$

• In order to satisfy the equation of motion, the angular frequency must satisfy the following condition:

$$\left(\omega^2 - i\omega \frac{b}{m} - \frac{k}{m}\right) Ae^{i\omega t} = 0$$

 $\left(\omega^2-i\omega\frac{b}{m}-\frac{k}{m}\right)\!Ae^{i\omega t}\!\!=\!\!0$ Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 23

23

Damped harmonic motion.

• We can solve this equation and determine the two possible values of the angular velocity:

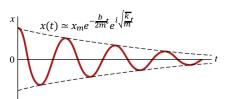
$$\omega = \frac{1}{2} \left(i \frac{b}{m} \pm \sqrt{4 \frac{k}{m} - \frac{b^2}{m^2}} \right) \simeq \frac{1}{2} i \frac{b}{m} \pm \sqrt{\frac{k}{m}}$$

• The solution to the equation of motion is thus given by

$$x(t) \simeq x_m e^{-\frac{b}{2m^t}} e^{i\sqrt{\frac{k_T}{m^t}}}$$

Damping Term SHM Term

Damped harmonic motion.

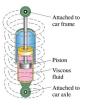


The general solution contains a SHM term, with an amplitude that decreases as function of time

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 25

25

Damped harmonic motion has many practical applications.



Damping is not always a curse.

Frank L. H. Wolfs

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 26

26

Driven harmonic motion.

- Consider what happens when we apply a time-dependent force F(t) to a system that normally would carry out SHM with an angular frequency ω_0 .
- Assume the external force $F(t) = mF_0 \sin(\omega t)$. The equation of motion can now be written as

$$\frac{d^2x}{dt^2} = -\omega_0^2x + \frac{mF_0\sin(\omega t)}{m} = -\omega_0^2x + F_0\sin(\omega t)$$

• The steady state motion of this system will be harmonic motion with an angular frequency equal to the angular frequency of the driving force.

Frank L. H. Wolfs

Driven harmonic motion.

• Consider the general solution

$$x(t) = A\cos(\omega t + \phi)$$

• The parameters in this solution must be chosen such that the equation of motion is satisfied. This requires that

$$-\omega^2 A\cos(\omega t + \phi) + \omega_0^2 A\cos(\omega t + \phi) - F_0 \sin(\omega t) = 0$$

• This equation can be rewritten as

$$\begin{split} A(\omega_0^2 - \omega^2)(\cos(\omega t)\cos(\phi) - \sin(\omega t)\sin(\phi)) \\ - F_0\sin(\omega t) &= 0 \end{split}$$

Frank L. H. Wolfs

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 28

28

Driven harmonic motion.

• Our general solution must thus satisfy the following condition:

$$(\omega_0^2 - \omega^2) A \cos(\omega t) \cos(\phi) - \{(\omega_0^2 - \omega^2) A \sin(\phi) - F_0\} \sin(\omega t)$$

$$= 0$$

• Since this equation must be satisfied at all time, we must require that the coefficients of $\cos(\omega t)$ and $\sin(\omega t)$ are 0. This requires that

and

$$(\omega_0^2 - \omega^2)A\cos(\phi) = 0$$

$$(\omega_0^2 - \omega^2)A\sin(\phi) - F_0 = 0$$

Frank L. H. Wolfs

Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 29

29

Driven harmonic motion.

• The interesting solutions are solutions where $A \neq 0$ and $\omega \neq \omega_0$. In this case, our general solution can only satisfy the equation of motion if

 $\cos(\phi) = 0$

and

$$(\omega_0^2 - \omega^2)A\sin(\phi) - F_0 = (\omega_0^2 - \omega^2)A - F_0 = 0$$

• The amplitude of the motion is thus equal to

$$A = \frac{F_0}{\omega_0^2 - \omega^2}$$

Frank L. H. Wolfs

