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New York Times 9/21/2023.
I directed the author to lecture 5.

THENEW YORK TIMES NATIONAL THURSDAY, SEPTEMBER
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Astronaut Ready for Silence After Year in Space
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Outline.

e Course information:
e Exam # 1

* Quiz.

 Continuation of the discussion of Chapter 4:

« Simple harmonic motion.
* Damped harmonic motion.
* Driven harmonic motion.
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Exam 1.

* The results of exam # 1 will be distributed via email on
Monday.

* The exam will be returned next week during recitations.

* If you do only one thing: compare the points you see on the
blue booklets with the points in your email. It is easy to
make a mistake during data entry.

« Compare your solutions with the posted solutions.

e If you are unhappy with how your exam was graded:

» Write a note explaining why you feel you deserve more points.
e Hand you note and your exam booklet(s) to me before or during class

on October 1.
* Do not ask your TA to modify your grade.
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First results Exam # 1: 10% of the scantron
forms had incorrect student IDs.

Result Exam # 1, Questions 1 - 10

25

20

Number of Students

0-5 5-10 10-15 15-20 20-25
Points
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First results Exam # 1:
50% of all students failed problem 2.

Problem 2 (2.5 points) Answer on Scantron form

You measure the length of a plate using a ruler, as shown in Fig. 2.

Figure 2: The measurement of the length of a plate.

What is your best estimate of the length of the plate (in units of meters)?
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Quiz lecture 07.
PollEv.com/frankwolfs050

* The quiz today will have
three questions.

° IIWI? Co.lleflt your ar}[;wi)rsll Live activities for -
cleccironiCally using e ro teammates, students, ‘ .
[

EVerywhere System. and friends
pktrciveqesions ot e pricpan . . \i
e The answers for each - 'R
question will be entered 1n 1\

sequence (first 60 s for
question 1, followed by 60 s
for question 2, etc.).
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A quick review of the material discussed 1n
Lecture 6.

* We can visualize a solid as a
collection of atoms of mass m,
interconnected by springs.

 The atoms are not at rest in a solid,
but continuously vibrate around an
equilibrium position.

* The temperature of the solid 1s a
measure of the kinetic energy
associated with the motion of the
atoms.

* This simple model can explain many
important properties of matter, but
many others can only be explained in

terms of quantum mechanics.
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The spring-mass system.

* The key to the understanding of the atomic model of matter
1s the understanding of the spring-like interaction between
the atoms.

 Since matter will never be at the absolute zero temperature,
the atoms will have an non-zero average kinetic energy
(proportional to the temperature of the matter).

* Since the atoms will move, the "springs" in our model will

carry out a dynamic motion which we will need to
understand in more detail.
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The spring-mass system.

* For the spring force we know:

 Its direction is opposite to the
displacement.

* Its magnitude is & |x|.

 Consider the force acting on mass
m when 1t is located at position x:

o F'=_-kx

* But we also know that F' = ma

d?x k
e Thus ....... a=_——"=-_X
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The spring-mass system.

(a)

F <t

WY E

(b)
|

x=0
F=0
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(e)

* The displacement of the spring as
function of time can thus be
determine 1if we can solve the
following equation:

d’x k

+—x=0
dxt? m

* This equation has two possible

solutions:
e x(t) = Acos(wt + ¢)
e x(t) = Asin(wt + ¢)

where w? =kim.
* This motion i1s an example of

simple harmonic motion.
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Simple harmonic motion.

Phase Constant

Ampl itude c=> —~+—— Paper motion E

l | o
x(t) = Acos(wt + ¢) o E

3T T

le

Angular Frequency
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Simple harmonic motion.

* Instead of the angular frequency @ the motion can also be
described 1n terms of its period 7 or its frequency v.

*The period 7 1s the time required to complete one
oscillation:

x(t) =x(t+T)

or

Acos(wt + ¢) = Acos(wt + wT + ¢)

* In order for this to be true, we must require that wT = 2.
The period 7'1s thus equal to 27/ w.

* The frequency v 1s the number of oscillations carried out per
second (v = 1/T). The unit of frequency is the Hertz (Hz).

Per definition, 1 Hz=1 s-!.
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Simple harmonic motion.
What forces are required?

* Consider we observe simple harmonic motion.

* The observation of the equation of motion can be used to
determine the nature of the force that generates this type of
motion.

* In order to do this, we need to determine the acceleration of
the object carrying out the harmonic motion:

x(t) = Acos(wt + ¢)
v(t) = ccil_az = —wAsin(wt + ¢)

a(t) = % = —w?Acos(wt + @) = —w?x(t)
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Simple harmonic motion.
What forces are required?
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Note: maxima in displacement correlate with minima in
acceleration.
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Simple harmonic motion.
What forces are required?

* Using Newton’s second law we can determine the force
responsible for the harmonic motion:

F = ma = —mw?x

* We conclude:

Simple harmonic motion is the motion executed by a particle of mass m,

subject to a force I that is proportional to the displacement of the
particle, but opposite in sign.

 Any force that satisfies this criterion can produce simple
harmonic motion. If more than one force 1s present, you need
to examine the net force, and make sure that the net force 1s
proportional to the displacements, but opposite in sign.
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Simple harmonic motion (SHM).
The simple pendulum.

 Consider a simple pendulum.

« A simple pendulum is a pendulum
for which all the mass is located at
a single point at the end of a
massless string.

 There are two forces acting on the
mass: the tension 7 and the
gravitational force mg.

* The tension T cancels the radial
component of the gravitational
force when |x| and |@| reach their
maxima. At all other positions,
the net radial force is pointing in
the same direction as the tension 7
and provides the required
centripetal acceleration.
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Simple harmonic motion (SHM).
The simple pendulum.

* The net force acting on he mass is
directed perpendicular to the
string and is equal to

F = —mgsin6@

The minus sign indicates that the
force 1s directed opposite to the
angular displacement.

* When the angle 6 is small, we can
approximate siné by 0:

X
F~-mgl=—-mg-—
L
 Note: the force is again
proportional to the
displacement.
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Simple harmonic motion (SHM).
The simple pendulum.

« The equation of motion for the
pendulum is thus

d’xy x

F=m = —mg —
dt? gL
or
d?x
Yy _ _9,
dt? L

* The equation of motion is the same as
the equation of motion for a SHM, and
the pendulum will thus carry out SHM
with an angular frequency w = \/ g/L.

* The period T of the pendulum is

2T L
T=—=2n\/:
w 9

T is independent of mass m.
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Simple harmonic motion (SHM).
The torsion pendulum.

* What is the angular frequency of
the SHM of a torsion pendulum:

 When the base is rotated, it twists
the wire and the wire generates a
torque which 1s proportional to the
the twist angle:

T=—K0

The torque generates an angular
acceleration o

d*6

a:—
dt?

T
:—:——6
I

* The resulting motion is harmonic

motion with an angular frequency
w=.K/I.
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3 Minute 35 Second Intermission

 Since paying attention for 1 hour
and 15 minutes 1s hard when the
topic 1s physics, let’s take a 3
minute 35 second intermission.

* You can:
* Stretch out.
 Talk to your neighbors.
« Ask me a quick question.
* Enjoy the fantastic music.
* Go asleep, as long as you wake up
in 3 minutes and 35 seconds.

/] QA
RN
[ ) )|
. //x' //

\ 4
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Damped harmonic motion.

* Consider what happens when 1n addition to the restoring
force a damping force (such as the drag force) 1s acting on
the system:

Fe—ix—bp™
- dt

 The equation of motion is now given by:

dzx_l_bdx_l_k 0
dt?2  mdt mx_
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Damped harmonic motion.

* The general solution of this equation of motion 1s
x(t) = Ae'@?

* If we substitute this solution into the equation of motion we
find

: . b, kK,
—w?Ae'®t + iw —Ae'®t + —Ae'®t=(
m m
*In order to satisfy the equation of motion, the angular
frequency must satisfy the following condition:
. bk :
(a)2 —iw—— —) Aet?t=0
m m
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Damped harmonic motion.

* We can solve this equation and determine the two possible
values of the angular velocity:

_1 k
w_Z l m

+ (4 .5
Tt [d=—— | =5i
\ 2 N

* The solution to the equation of motion is thus given by

b
m

—Lt i\/Et
x(t) =~ x,e 2m e \Nm

[

Damping Term SHM Term
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Damped harmonic motion.

b [k
X _D_ t
_ x(t) = xpe 2mte Nm

-y

—

The general solution contains a SHM term,
with an amplitude that decreases as function of time
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Damped harmonic motion has many practical
applications.

Attached to
car frame

Viscous
fluid

Attached to
car axle

Damping 1s not always a curse.
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Driven harmonic motion.

* Consider what happens when we apply a time-dependent
force F(7) to a system that normally would carry out SHM
with an angular frequency w.

« Assume the external force F(t) = mF,sin(wt). The
equation of motion can now be written as
d’x , +mFO sin(wt) 2 4 Fosin(et)
— = —W§X = —w§X sin(w
dtz 0 m 0 0
* The steady state motion of this system will be harmonic
motion with an angular frequency equal to the angular
frequency of the driving force.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 27



Driven harmonic motion.

e Consider the general solution
x(t) = Acos(wt + ¢)

* The parameters 1n this solution must be chosen such that the
equation of motion is satisfied. This requires that

—w?Acos(wt + ¢) + wiAcos(wt + @) — F, sin(wt) = 0

* This equation can be rewritten as

A(wé — w?)(cos(wt) cos(¢) — sin(wt) sin())
— Fy sin(wt) = 0
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Driven harmonic motion.

* Our general solution must thus satisfy the following condition:

(w5 — w?)A cos(wt) cos(¢p) — {(ws — w?)Asin(¢p) — Fy} sin(wt)
=0

» Since this equation must be satisfied at all time, we must require that
the coefficients of cos(wt) and sin(wt) are 0. This requires that

(wi — w?)Acos(¢p) =0
and

(wi — w?)Asin(¢p) — Fy =0
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Driven harmonic motion.

* The interesting solutions are solutions where A # 0 and
w # wq. In this case, our general solution can only satisfy
the equation of motion if

cos(¢p) =0

and
(w5 — w?)Asin(¢) — Fy = (w3 — w?)A—F, =0
 The amplitude of the motion 1s thus equal to

Fo

2 _ 2
w§ — W
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Driven harmonic motion.

 [f the driving force has a
frequency close to the natural
frequency of the system, the k
resulting amplitudes can be very
large even for small driving
amplitudes. The system i1s said to
be in resonance.

* In realistic systems, there will

also be a damping force.
Whether or not resonance
behavior will be observed will

depend on the strength of the

damping term.
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Driven harmonic motion.
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That’s all for today!
Next lecture: force, motion, and energy.

"Rush Hour in Reno”
Credit and Copyright: John Endter of Minden, Nevada
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