
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

Physics 141. \qquad Topics for today.

- Homework:
- The solutions to homework set \# 1 are available today on the WEB

The solutions to homework set \# 1 are available today on the WEB
(see previous email for details about how to access this password (see previous email

- Laboratory \# 1: now what?
- Exam \# 1. \qquad
- A quick quiz.
- Chapter 3: the gravitational force.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 2
\qquad
\qquad
\qquad
\qquad
\qquad

2

Physics 141. Course Information.	
- Laboratories:	
- The laboratories are a required component of the course.	
- measurement of the gravitational acceleration using two different techniques.	
website to access the installers for MAC and Windows, and the details provided in an email to the list for the username and password.	
- B\&L 407 will be open next week during regular lab hours if you need to redo part of a measurement or if you need help with data analysis and/or	
interpretation. One lab TI will be present at all times. - Lab reports are due next week on Friday at 12.00 pm. This lab report should	
include a detailed error analysis:	
- Determine whether you need to use normal or weighted averages when you want to combine several data sets.	
- Your lab report will not be better the closer your results match the known value of	
- Lab reports must be uploaded in pdf format to BOX	
Frank L.t. Wools	Department of Physics and Astronomy, Univesity of fochester, Lecture 05, Page

Physics 141. Course Information.	
- Lab reports must be uploaded in pdf format to BOX: - https://rochester.app.box.com/f/6fd63b42 eda949f2aef6bec953fc52d6 - Use the following format for the name of the lab report you are submitting: Exp\#-LN-FM-StudentID.pdf where \# is the experiment number $(1,2,3,4$, or 5$), \mathrm{LN}$ is your last name, FN is your first name, and StudentID is you student ID number. - Note: this information and the link are also available on the course information page.	wexisisio Submit your Phy 141 lab reports here: Uplowtiles *

\qquad
\qquad format to BOX
https.//rochester.app.box.com/f/6fd63b42
Use the following format for the
name of the lab report you are ubmitting:
Exp\#-LN-M-Stuenid.pdr
(1, 2, 3, 4, 5),
$1,2,3,4$, or 5), LN is your las name, FN is your first name, and
:
ment of Physics and Astronomy, University of Rochester, Lecture 05, Page 4
4

Physics 141. \qquad Course Information.

- Homework set \# 2 is due on Friday 9/15 at noon.
- Homework set \# 3 is due on Friday 9/29 at noon.
- Midterm Exam \# 1 will take place on Thursday 9/21 between 8.00 am and 9.20 am in Hoyt. It will cover the
material covered in Chapters 1-3 and error analysis.
- We will have a lecture on $9 / 21$ at 9.40 am .
- Notes:
- The focus of recitations next week will be exam \# 1. Come prepared with all your questions.
- There will be a review next week on Tuesday during our lecture period of the material covered on exam \#1.
- My office hours on $9 / 21$ will be moved to $9 / 19$ (same time and place). - There will be no office hours on Thursday and Friday.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 5
\qquad
\qquad
\qquad
\qquad
\qquad

5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Applying the momentum principle.

- In order to apply the momentum
principle we need to know the details
of interaction (magnitude and direction).
- In many interesting applications, we know the interaction because its properties have been studied in detail in the laboratory.
A good example is the gravitational force. The general form of the gravitational force was proposed by Newton and sensitive experiments, such as the Cavendish experiment, can be used to measure the
gravitational constant G.
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 8
Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 8

\qquad
\qquad
\qquad
\qquad
\qquad

8

9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

The shell theorem.

- The gravitational force law is only valid if the masses involved are point masses (mass located at a single point).
- In reality we always are dealing with objects that are not point-like objects, but have their mass distributed over a non-zero volume. - Using the principle of superposition you can show that the gravitational force exerted by or on a uniform
 sphere acts as if all the mass of the sphere is concentrated at its center.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 11
11

The gravitational force and the gravitational acceleration.	
- Close to the surface of the earth, the gravitational force is equal to the product of the mass of the object and the gravitational acceleration g. $\vec{F}_{g r a v}=G \frac{M_{E}}{R_{E}^{2}} m \hat{r}=m \vec{g}$ - By measuring g we can determine for example the mass of the earth (assuming we know G).	http://www.csr.utexas.edu/grace/

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

Implications of Newton's third law.

- The gravitational force comes in
pairs: the force exerted by mass
m_{1} on mass m_{2} has the same
magnitude as the force exerted by
mass m_{2} on mass m_{1}, but it is
pointing in the opposite direction
(Newton's Third Law).
- This implies that the gravitational
force you exert on the earth has
the same magnitude as the
gravitational force the earth
exerts on you. Sounds weird?
Frank L. H. Wolfs

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

Implications of Newton's third law.

- If we consider the two masses together, the net force is zero.
- The momentum principle thus implies that there is no change in the linear momentum of the
system.
- Linear momentum is thus conserved if no external forces act on the system.

- Note: this applies to all possible
forces (not just gravitational).
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 17
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Consider an object of mass m moving in a circular orbit of radius r around the earth.
- In order for this motion to be possible, a net force must be acting on this object with a magnitude of $m v^{2} / r$, directed towards the center of the earth.
- The only force that acts in this direction is the gravitational force and we must thus require that

$$
G \frac{m M_{e a r t h}}{r^{2}}=\frac{m v^{2}}{r} \quad \text { or } \quad v^{2}=G \frac{M_{e a r t h}}{r}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 19
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

Orbital motion.

- The orbital velocity is related to
the period of motion:

$$
v=\frac{2 \pi r}{T}
$$

and the relation between v and r
can be rewritten as a relation
between T and r :

$$
r^{3}=G \frac{M_{\text {earh }}}{4 \pi^{2}} T^{2}
$$

- This relation shows that based on the orbital properties of the moon

\qquad we can determine the mass of the \qquad
relation between orbit size and period can also be applied to our solar system and be used to determine the mass of the sun:
$r^{3}=G \frac{M_{s \operatorname{sm}}}{4 \pi^{2}} T^{2}$
- Using the orbital information of the
planets in our solar system we find that

$$
M_{s u n}=(1.989 \pm 0.003) \times 10^{30} \mathrm{~kg}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 21
\qquad
\qquad

Numerical studies.
- The properties of the circular orbit just discussed can be
determined analytically.
- In order for a planet to carry out such a circular orbit, its
velocity and position must be exactly right. Any small
deviation from these perfect conditions will produce an
elliptical orbit.
- The properties of these elliptical orbits are best studied
numerically using tools such as VPython.
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 22

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

Planetary motion:
Orbital shapes.

- Stable planetary motion does not require a perfect circular orbit.
- The shape of the orbit of a planet is described by an ellipse (note: a circle is a special type of ellipse) The ellipse is determined by specifying its semimajor axis s and its semiminor axis b.
- The foci of an ellipse are special points for which the sum of the distance F_{1} to P and the distance

F_{2} to P is the same for every point on the ellipse.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 23
23
Planetary motion:
Kepler's first law.
- Note: for a circle $s=b$ and $F_{1}=$
- The sun is located at one focus on
the ellipse.
- The eccentricity e of the defined
such that $e s$ is the distance from
the center of the ellipse to either
focus. Note: for a circle $e=0 \mathrm{~m}$.
- The properties of the shape of the
orbit of the planets and the
location of the sun are part of
what we call Kepler's First
Law.
Frank L . H. Wolfs

Kepler's second law.
- Kepler's Second Law states:
"Each planet moves so that an
imaginary line drawn from the
Sun to the planet sweeps out equal
areas in equal periods of time."
- Important consequences of
Kepler's Second Law:
- The velocity of the planet will
increase the closer the planet is to
the Sun (e.g. v12 > v34).
- The details of the orbit provide
information about the mass of the
sun.
Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The details of the orbit provide
\qquad
25

Kepler's second law.

\qquad
26

Mass and weight. Two very different parameters.

\qquad
\qquad
\qquad
號 know that the apparent mass of the object is velocity dependent of light) and the apparent mass is thus not an intrinsic property of thi object. The unit of mass is the kilogram (kg)

- The weight of an object is a measure of the gravitational force acting on it. It is thus dependent on its location (e.g. the weight of an object will be smaller on the surface of the moon compared to its weight on the surface of the earth). The unit of weight is the Newton (N).
\qquad
\qquad
\qquad
\qquad
Weightlessness.
Do not get confused!
- One of the most confusing aspects of
space travel is the concept of
weightlessness. It appears as of the
astronauts in the space station do not
have any weight.
- Frequently people interpret this as
implying the absence of the
gravitational force.
- Certainly this can not be the case since
the gravitational force scales as $1 / r^{2}$
and is thus not that different from the
force we feel on the surface on the
earth.
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 28
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Weightlessness.
Do not get confused!
- We experience apparent weightlessness anytime we fall with the same acceleration as our surroundings. - Consider a falling elevator. Every object in the elevator will fall with the same acceleration, and the elevator will not need to exert any additional forces, such as the normal force, on those inside it. - It appears as if the objects in the elevator are weightless (in reality, they of course are not). Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 29 Frank L. H. Wolfs

\qquad
\qquad
\qquad surroundings.

- Consider a falling elevator.

fall with the same acceleration,
and the elevator will not need to
s the nordional forces, such inside it.
- It appears as if the objects in the they of course are not)
\qquad

29
Weightlessness.
Do not get confused!

- Weightlessness in space is based
on the same principle:
- Both astronaut and spaceship
"fall" with the same acceleration
towards the earth.
- Since both the astronaut and the
spaceship fall in the same way
(gravitational acceleration only
depends on the mass of the earth,
not on the mass of the spaceship
or the astronaut) the astronaut
appears to be weightless.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 05, Page 30

\qquad
31

