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Physics 141.
Lecture 3.
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Physics 141.
Lecture 3.

• Today's Topics:
• Course Information: 

• Laboratories - software.
• Chapter 1: Matter and Interactions

• Building blocks of matter
• The four fundamental interactions
• Detecting interactions (part 1: observing motion)

• A very quick review different types of motion (you should have seen 
these types of motion before in your high-school physics course):

• Linear motion and variables.
• Vectors.
• Uniform circular motion.
• Rotational motion and variables.

• Chapter 1 continued
• Detecting interactions (part 2: motion and forces)
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Physics 141 Laboratories.

• The Physics 141 laboratories will focus on 
experimental techniques and procedures.

• Schedule:
• Exp. 1: 9/11 (B&L 407)
• Exp. 2: 9/25 (B&L 407)
• Exp. 3: 10/9 (B&L 407)
• Exp. 4: 10/30 (B&L 407)
• Exp. 5: 11/13 (Spurrier Gym) and 11/20 

(B&L 407)
• Software used in the laboratory can be 

downloaded from the web (for both PC 
and Mac).  The required password will be  
distributed via email.

• Data collected during the lab sessions can 
be analyzed in more detail afterwards.
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The Building Block of Matter:
The Standard Model Particles.

http://www2.slac.stanford.edu/vvc/theory/fundamental.html
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The Building Block of Matter:
Grouped According to Spin.

http://particleadventure.org/particleadventure/frameless/chart.html
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The Building Block of Matter:
Combining Quarks.

http://particleadventure.org/particleadventure/frameless/chart.html
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Types of Matter.

• The elementary particles of the 
the standard model are point-like 
particles.  They carry spin, mass, 
and charge (electric, color).

• Quarks are confined in hadrons 
(either two or three quarks) which 
are colorless.

• Protons and neutrons (hadrons) 
are the building blocks of  nuclei.

• Nuclei and electrons are the 
building blocks of atoms.

• Atoms are the building blocks of 
molecules.

http://www2.slac.stanford.edu/vvc/theory/fundamental.html



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 8

Types of Matter.

• The molecules form the 
molecular clouds from which 
solar systems, like are own, are 
created.  Note: most of the 
molecules of life were first made 
in stars and dispersed in space 
when the stars die.

• Solar systems cluster to form 
galaxies.

Infra-red composite image of the Milky Way.
Source: NASA
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The Four Fundamental Interactions.

http://particleadventure.org/particleadventure/frameless/chart.html
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The Four Fundamental Interactions:
The Gravitational Force.

• The gravitational force is the 
weakest of the four fundamental 
forces.

• The gravitational force is always 
attractive.

• On large distances, the 
gravitational force dominates 
(e.g. the motion of our planets in 
our solar system can be described 
in terms of just the gravitational 
force).
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The Four Fundamental Interactions:
The Weak Force.

• The weak force is responsible for 
various exotic phenomena (e.g. 
parity violation).

• Interactions involving neutrinos 
usually occur via the weak force.

• Processes that occur via the weak 
force are usually characterized by 
long time scales (second, 
minutes, hours, ….).  A good 
example is neutron decay. http://particleadventure.org/particleadventure/frameless/chart.html
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The Four Fundamental Interactions:
The Electromagnetic Force.

• The electromagnetic force is 
responsible for the formation of 
atoms.

• The electromagnetic force acts on 
electrically charged particles.

• The electromagnetic force can be 
attractive and repulsive.

http://www.downunderchase.com/
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The Four Fundamental Interactions:
The Strong Force.

• The strong force is responsible 
for the stability of nuclei.  
Without the attractive strong 
force, the nuclei would fly apart 
as a result of the repulsive 
electric force.

• Differences in binding energies 
between different nuclei is 
responsible for phenomena such 
as nuclear fusion and fission. 



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 14

Detecting Interactions.
• A non-zero force acting on an object will 

accelerate it:
• Change its direction
• Change its speed

• The change in the direction and/or speed 
provides us with information about the 
magnitude and the direction of the 
interaction.

• If we know the interaction we can 
determine the change in the direction and/or 
speed.

• To detect interactions we need to know how 
to describe motion and I will now quickly 
review important aspects of motion that you 
should have seen in high school.
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Motion in one dimension:
the equations of motion (non-relativistic).

• The position of an object along a straight line can be 
specified by a single parameter x.

• The velocity v and acceleration a of the objects are related to 
the time dependence of its position:

• If the acceleration of the object is constant, its position and 
velocity are equal to

  
v t( ) = dx

dt
a t( ) = dv

dt
= d2x

dt2

  

v t( ) = v0 + at

x t( ) = x0 + v0t +
1
2 at2
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Linear motion in one dimension.

  

x t( ) x t( ) = v t '( )dt '
t0

t

∫ x t( ) = x0 + v0t +
1
2

at2

v t( ) = dx
dt

v t( ) = a t '( )dt '
t0

t

∫ v t( ) = v0 + at

a t( ) = dv
dt

= d2x
dt2 a t( ) a t( ) = a =  constant

The same for different observers!

Parameters define initial conditions!
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Motion in two or three dimensions:
vectors required.

• In order to study motion in two or 
three dimensions, we need to 
introduce the concepts of vectors.

• Position, velocity, and acceleration in 
two- or three-dimensions are 
determined by not only specifying 
their magnitude, but also their 
direction.

• A parameter that has both a 
magnitude and a direction is called a 
vector.

• The relations between position, 
velocity, and acceleration are similar 
to those obtained for one-dimensional 
motion.
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Using vectors to specify a displacement.

• The same displacement can be 
achieved in many different ways.

• Instead of specifying a heading and 
distance that takes you from the 
origin of your coordinate system to 
your destination, you could also 
indicate how many km North you 
need to travel and how many km 
East (vector addition).

• In either case you need to specify 
two numbers and this type of 
motion is called two dimensional 
motion.
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Vector manipulations.

• Any complicated type of motion can 
be broken down into a series of 
small steps, each of which can be 
specified by a vector.

• I will make the assumption that you 
are familiar with the details about 
vector manipulations:

• Vector addition

• Vector subtraction

• You may want to review Section 1.4 
of in the textbook (pg. 8 - 17).
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Vector components.

• Although we can manipulate 
vectors using various graphical 
techniques, in most cases the 
easiest approach is to decompose 
the vector into its components 
along the axes of the coordinate 
system you have chosen.
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Vector components.

• Using vector components, vector 
addition or subtraction becomes 
equivalent to adding or 
subtracting the components of the 
original vectors.

• The sum of the x and y 
components can be used to 
construct the sum vector.

• The difference of the x and y 
components can be used to 
reconstruct the difference vector.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 22

Other vector manipulations:
the scalar product.

• The scalar product (or dot product) 
between two vectors is a scalar which is 
related to the magnitude of the vectors 
and the angle between them.

• It is defined as:

• In terms of the components of a and b, 
the scalar product is equal to

• Usually, you will use the component 
form to calculate the scalar product and 
then use the vector form to determine the 
angle between vectors a and b.

φ

a

b
  
ai

b = a


b cosφ

   
ai

b = axbx + ayby + azbz
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Other vector manipulations:
the vector product.

• The vector product between two vectors 
is a vector whose magnitude is related to 
the magnitude of the vectors and the 
angle between them, and whose 
direction is perpendicular to the plane 
defined by the vectors.

• The vector product is defined as

• Usually the vector product is calculated 
by using the components of the vectors 
a and b:

  

C =


A

B sinθ

    


A ×

B =

î ĵ k̂
Ax Ay Az

Bx By Bz

= Ay Bz − Az By( ) î + Az Bx − Ax Bz( ) ĵ+ Ax By − Ay Bx( ) k̂
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Motion in three dimensions:
constant acceleration.

    

r t( ) =
x t( )
y t( )
z t( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

v t( ) =
vx t( )
vy t( )
vz t( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a t( ) =
ax t( )
ay t( )
az t( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where

x t( ) = x0 + v0xt +
1
2

axt
2 y t( ) = y0 + v0 yt +

1
2

ayt
2 z t( ) = z0 + v0zt +

1
2

azt
2

vx t( ) = v0x + axt vy t( ) = v0 y + ayt vz t( ) = v0z + azt

ax t( ) = ax =  constant ay t( ) = ay =  constant az t( ) = az =  constant

Note: A non-zero acceleration in one direction
only affects motion in that direction.
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A special case: 
projectile motion in two dimensions.

  

x t( ) = x0 + v0xt y t( ) = y0 + v0 yt −
1
2

gt2

vx t( ) = v0x =  constant vy t( ) = v0 y − gt

ax t( ) = 0 ay t( ) = −g =  constant

Note: The non-zero gravitational acceleration only affects 
motion in the vertical direction; not in the horizontal direction.
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2 Minute 47 second intermission.
Brought to you by the class of 2012.

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 2 
minute 47 second intermission 
and listen to the Wolfs Song, 
created by these students after 
abusing my lecture recordings.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Go asleep, as long as you wake up 

in 2 minutes and 47 seconds.
According to these students, my exams are toxic.
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More complicated motion:
uniform circular motion.

• Uniform circular motion of an object 
with period T can be described by the 
following equations:
x(t) = r0 cos(2π t/T)
y(t) = r0 sin(2π t/T)

• The motion of an object described by 
these equations is motion with 
constant (uniform) speed, v0 = 2πr0/T, 
along a circle of radius r0.

• Important facts to remember:
• The acceleration and the change in 

momentum vectors points towards the 
center of the circle.

• The magnitude of the acceleration is 
v02/r0.
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Uniform circular motion:
the direction of the acceleration.
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Circular/rotational motion:
rotational variables.

• Although we can use linear variables 
to describe circular motion it is often 
more convenient to use angular 
variables.

• The variables that are used to 
describe this type of motion are 
similar to those we use to describe 
linear motion:

• Angular position Θ (rotation angle 
measured with respect to a reference 
axis - the x axis in this case).  Units: 
rad.

• Angular velocity ω = dΘ/dt.  Units: 
rad/s.

• Angular acceleration α = dω /dt.  
Units: rad/s2.

l = RΘ
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Circular/rotational motion:
rotational variables.

• Notes:

• The angular position is always 
specified in radians!!!! 

• One radian is the angular 
displacement corresponding to a 
linear displacement l = R.  Thus, 
one complete revolution (360°) 
corresponds to 2π radians.

• Make sure you keep track of the 
sign of the angular position!!!!!

• An increase in the angular 
position corresponds to a counter-
clockwise rotation; a decrease 
corresponds to a clockwise 
rotation.
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Complex motion in Cartesian coordinates is 
simple motion in rotational coordinates.
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Circular/rotational motion:
constant angular acceleration.

• If the object experiences a 
constant angular acceleration, 
then we can describe its rotational 
motion with the following 
equations of motion:

• These equations are very similar 
to the equations of motion for 
linear motion.

  

ω t( ) =ω0 +αt

θ t( ) = θ0 +ω0t +
1
2
αt2
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Detecting Interactions.

• A non-zero force acting on an 
object will accelerate it:

• Change its direction
• Change its speed

• The change in the direction 
and/or speed provides us with 
information about the magnitude 
and the direction of the 
interaction.

• If we know the interaction we can 
determine the change in the 
direction and/or speed.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 03, Page 34

Detecting Interactions:
Newton's First Law of Motion.

• Newton's first law of motion provides us with important 
information about the relation between the change in 
velocity (magnitude and/or direction) and the interaction:

 An object moves in a straight line and at constant speed except to the 
extent that it interacts with other objects.

• When different observers observe the motion of the same 
object, they will in general observe different velocities.  If 
nature is beautiful, the laws of physics should be the same 
for these observers (and thus independent of velocity).  This 
principle is the principle of relativity:

 Physical laws work in the same way for observers in uniform motion 
as for observers at rest.
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Quantifying the extent of an interaction.

• The effect of an interaction will depend on both the velocity 
and the mass of the observed object:

• It is easier to change the velocity of an object when it is moving slow 
compared to when it is moving fast.

• It is easier to change the velocity of a light object compared to what is 
required for a massive object moving with the same velocity.

• It is observed that the change in the linear momentum

 is proportional to the "amount" of the interaction.
   

p = mv

1- v2

c2
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Quantifying the extent of an interaction.

• For velocities small compared to the speed of light (c) our 
definition of the linear momentum approaches the more 
familiar definition you should have seen in your high-school 
physics course:

   

p = mv

1- v2

c2

≈ mv (if v c)
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Quantifying the extent of an interaction.

• The change in the linear momentum of an object is 
proportional to the strength of the interaction and to the 
duration of the interaction.  This principle is known as the 
momentum principle:

• This equation allows us to calculate the time-dependence of 
the linear momentum if we know the initial value and the 
time/position dependence of the interaction.

   Δ
p =

FnetΔt
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Quantifying the extent of an interaction.

• If we do not know the interaction, but we measure the 
change in the linear momentum we can determine extent of 
the interaction:

• In the non-relativistic limit this relation becomes
   


Fnet =

dp
dt

   

!
Fnet =

d!p
dt

≈ m d!v
dt

= m!a
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That’s all for today!  
Next: Chapter 2.

The GRACE mission: measuring the Earth's gravitational field.
http://www.csr.utexas.edu/grace/


