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Abstract

In this lab we aim to calculate Earth’s gravitational constant by measuring the period of a pendulum. We obtain a
value of 9.79 ± 0.02m/s2. This measurement agrees with the accepted value of g = 9.81m/s2 to within the precision
limits of our procedure. Limitations of the techniques and assumptions used to calculate these values are discussed.
The pedagogical context of this example report for PHY 141 is also discussed in the final remarks.

1 Theory

The gravitational acceleration g near the surface of the Earth is known to be approximately constant, disregarding small
effects due to geological variations and altitude shifts. We aim to measure the value of that acceleration in our lab, by
observing the motion of a pendulum, whose motion depends both on g and the length L of the pendulum.

It is a well known result that a pendulum consisting of a point mass and attached to a massless rod of length L obeys
the relationship shown in eq. (1),

d2θ

dt2
= − g

L
sin θ, (1)

where θ is the angle from the vertical, as showng in Fig. 1. For small displacements (ie small θ), we make a small angle
approximation such that sin θ ≈ θ, which yields eq. (2).

d2θ

dt2
= − g

L
θ (2)

Eq. (2) admits sinusoidal solutions with an angular frequency ω. We relate this to the period T of oscillation, to obtain
an expression for g in terms of the period and length of the pendulum, shown in eq. (3).

ω =
√
g

L
and T = 2π

ω
, ∴ T = 2π

√
L

g
→ T 2 = 4π2L

g
→ g = 4π2L

T 2 (3)

We therefore see that by measuring the period of a pendulum of known length, we may calculate the gravitational
acceleration near Earth’s surface.

In deriving these equations, we have neglected air resistance and other forms of friction, and have assumed that we
may model our pendulum as a point mass attached to a rigid, massless rod or string. We set up our experiment such
that these assumptions are met as best we are able, noting that the use of a string that is long relative the size of our
masses/mass hangers, and masses which are heavy relative to the mass of our string will match these assumptions best.
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Fig. 1. A schematic of an idealized pedulum, as treated in our theory.

2 Experimental Apparatus and Procedures
Figure 2 Figure 3

Figs. 2 and 3 show the experimental setup used. The string was tied to table clamp such that the mass and
hanger could swing freely over small amplitudes in the photogate as shown. The photogate was mounted on an
adjustable stand on the floor. Its height was adjusted for each different string length used, such that the bottom
of the mass hanger would interrupt the photogate’s beam each time it passed through the point θ = 0.

In order to carry out this experiment, we use a 0.1kg mass and a 5-gram mass hanger, light string, a table clamp, and
photogate relayed to a computer with DataStudio software installed. Our aim is to use the photogate to measure the
period of oscillations. We fix our clamp over the side of the table, and attach a string bearing a mass to the clamp as
shown in Figs. 2 and 3, such that the string is free to swing below the edge of the table. We tie a 0.005kg mass hanger
to the end of the string, and place our 0.1kg mass on the hanger, as shown in Figs. 2, 3 and 4. Our total mass for the
entire experiment is thereby taken to be m = 0.105kg. We then fix a photogate below the edge of the table, such that the
string is free to swing through the photogate, and lowest-hanging point of the mass and hanger interrupts the photogate’s
beam when the string is vertical (θ = 0). We choose the vertical for this due to the possibility that air resistance would
change the amplitude of our oscillations; the effects on the period of our system due to air resistance would be negligible,
but if the amplitude is changing and we measure at some angle off the vertical, we introduce additional error in how
we measure our period, even if the period itself is not changing. Each time our pendulum passes the angle θ = 0, the
string interrupts the photogate’s beam at a time recorded by DataStudio. This occurs twice per period (once when the
pendulum is traveling to the right, and once as it travels to the left). We thereby take the period to be the difference
in times between every other point recorded in DataStudio via the photogate. In practice, we measure the period by
measuring the time t = t2 − t1 required for the pendulum to complete 10 complete oscillations and divide that time by
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10 to obtain T = t/10. This, in conjunction with performing many trials, better allows us to average out fluctuations
in the data collection process due to extraneous motion by the hanger, (it is, for instance, difficult to prevent it from
rotating a bit as it swings), which could affect when the bottom of the hanger passes through the photogate. We take t1
to be the time of the second event registered at the photogate and t2 to be the twenty-second photogate event recorded
in a given run. We set t1 to be second event since there are variations in the first point depending on how the mass is
released, despite our best efforts to do it the same way every time. In each run, the mass was displaced from the vertical
towards the photogate (close to the edge of the gate, without touching it), and released as DataStudio was set to begin
recording. The mass was allowed to oscillate for approximately 30 seconds in each run before it was stopped and reset to
start another run.

We require that several different pendulum lengths be used, in order to confirm that the proportionality in eq. (3)
is reasonable. We thereby use four different string lengths, `1 = 0.734m, `2 = .619m, `3 = .518m, and `4 = .417m. All
trials were performed with the same string, which was retied/rewound on the mounting bracket to generate new lengths;
each of these lengths ` were measured by placing a meter stick parallel to the hanging string, and measuring from the
topmost point on the string able to swing freely, to the knot on the mass hanger. Ten runs were performed for each of
these lengths. We additionally made a set of five measurements of a single ` value in order to estimate the error in this
measurement. The same was done for the measurement of x (the distance from the lowest point of the mass hanger to the
point of attachment, as shown in Fig. 4), and the measurement y from the bottom point to the center of the 0.1kg mass,
which is taken as an estimate of the center of mass of the mass-hanger object. We take the total length of the pendulum
to be the distance from the top of the string to the center of the weight hung on the bottom; for the ith length, this is
given by Li = `i + x̄− ȳ, as shown in figure 4. The center point of the 0.1kg mass, neglecting the hanger, is taken to be
the approximate position of the center of mass of the mass-hanger system attached to the spring.

Fig. 4. A schematic of the 0.1kg mass (brass), and 5g mass hanger
(grey). The parameters L, x, y, and ` are labeled to illustrate how
they were measured using a meter stick. We see that L = `+x−y,
where ` and L extend to the top attachment point of the string
(purple), and L approximates the distance from the pivot point of
the pendulum to the center of mass of the hanging weights.

3 Data Analysis

We begin by estimating the errors in our length measurements. As all these length measurements involve holding a ruler
up parallel to a hanging string there is some imprecision involved. Table 1 shows each of 5 sets of measurements of the
same `, x, and y. Variables with a bar denote the mean of the measurements of that variable. For N measurements, the
arithmetic mean is given by:

x̄ =
N∑

k=1

xk

N
→ Example: x̄ = .080 + .081 + ...

5 ≈ 0.080m (4)

The standard deviation in each value is calculated as follows:

σx =

√√√√ 1
N − 1

N∑
k=1

(xk − x̄)2 → Example: σx =
√

(0.080− 0.080)2 + (0.081− 0.080)2 + ...

4 ≈ 0.001m (5)
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Measurement No. `(m) x(m) y(m)
1 0.778 0.080 0.017
2 0.778 0.081 0.020
3 0.779 0.079 0.018
4 0.776 0.082 0.017
5 0.777 0.080 0.018

Mean 0.778 0.080 0.018
Standard Dev. 0.001 0.001 0.001

`i(m) Li(m) σL(m)
i = 1 0.734 0.796 0.002
i = 2 0.619 0.681 0.002
i = 3 0.518 0.580 0.002
i = 4 0.417 0.479 0.002

Table 1. We show a set of measurements of `, x, and y

with the mean and standard deviation in each set. These
values of ` were not used for oscillation; they are simply
a repeated measurement used to estimate the error in the
measurement process. The standard deviations σ`, σx, and
σy are shown.

Table 2. The final estimates of the distance L from the cen-
ter of mass to the pivot point for each of the four pendulum
lengths used is given, along with the estimated error in each
of those measurements.

As discussed above and shown in Fig. 4, we have Li = `i + x̄ − ȳ. The error in each L can be determined using error
propagation, on the basis of σ`, σx, and σy, all shown in Table 1. We propagate the error according to:

σL =

√
σ2

`

(
∂L

∂`

)2
+ σ2

x

(
∂L

∂x

)2
+ σ2

y

(
∂L

∂y

)2
=
√
σ2

` + σ2
x + σ2

y ≈ 0.002m (6)

We summarize our four values of L and ` as related above, and the error estimate in these is that calculated in eq. (6),
in Table 2.

The data for each of the runs and string lengths are shown below in Tables 3-6. We expect that the period should be
the same within each group of runs with the same length; we combine data within each data-set for a given length using
the arithmetic mean for this reason (see eq. (7)). All of the sample calculations shown below are based on the data in
Table 1. We use k to index the runs within a table, and let N = 10 be the number of runs.

T̄ =
N∑

k=1

Tk

N
→ Example: T̄1 = 1.78324 + 1.78196 + ...

10 ≈ 1.78206s (7)

The error in each data point within the sets is taken the be the standard deviation σ of that set, calculated according to
eq. (8):

σ =

√√√√ 1
N − 1

N∑
k=1

(Tk − T̄ )2 → Example: σ =
√

1
9 [(1.78324− 1.78206)2 + (1.78196− 1.78206)2 + ...] ≈ 0.00049s (8)

The error in the mean for a given dataset is given by σi (see eq. (9)), where i corresponds to the ith length tested:

σi = σ√
N

→ Example: σ1 = 0.00049√
10

≈ 0.00015s → T̄1 = 1.78206± 0.00015s (9)

We proceed by combining our results with a weighted mean, in order to obtain a final estimate for g. We use the
weighted mean for this since we now have an error in each L and T̄ , from which an overall g must be calculated. We
calculate values of g for each length used (eq. (10)), and the error in each value of g (eq. (11)), denoted by σgi. The
resulting values appear in Table 7.

gi = 4π2L

T̄ 2
i

→ Example: g1 = 4π2 · 0.796
1.782062 ≈ 9.89m/s2 (10)
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Table 3 (L = 0.796m) Table 4 (L = 0.681m) Table 5 (L = 0.580m) Table 6 (L = 0.479m)
Run # T (s)

1 1.78324
2 1.78196
3 1.78317
4 1.78299
5 1.78203
6 1.78272
7 1.78205
8 1.78226
9 1.78274
10 1.78287

Mean 1.78206
σ 0.00049
σ1 0.00015

Run # T (s)

11 1.67352
12 1.67396
13 1.67395
14 1.67351
15 1.67387
16 1.67368
17 1.67436
18 1.67379
19 1.67441
20 1.67397

Mean 1.67390
σ 0.00031
σ2 0.00010

Run # T (s)

21 1.52288
22 1.52543
23 1.52363
24 1.51641
25 1.51482
26 1.51611
27 1.52547
28 1.52408
29 1.51277
30 1.51724

Mean 1.51988
σ 0.00485
σ3 0.00154

Run # T (s)

31 1.37951
32 1.37427
33 1.37880
34 1.37884
35 1.37064
36 1.37918
37 1.37853
38 1.37835
39 1.37890
40 1.37851

Mean 1.37755
σ 0.00284
σ4 0.00090

Tables 3-6 display the measured periods in each of the runs performed for this experiment, along with the mean,
standard deviation, and error in the mean for each period. We note that the standard deviations in many of the
mean periods (which defines the error bars on those values), are small compared to the errors estimated in our
length measurements.

g(m/s2) σg(m/s2)
i = 1 9.89 0.0259
i = 2 9.60 0.0288
i = 3 9.91 0.0701
i = 4 9.97 0.0552

Table 7. We tabulate the values of g and standard deviations in those values, calcu-
lated according to eqs. (10) and (11). It is the errors σgi, shown here, which are used
to form weight factors in a weighted mean of the values gi. These values, and the
process of taking the weighted mean, are represented graphically in Fig. 5.

σgi =

√
σ2

L

(
∂g

∂L

)2
+ σ2

i

(
∂g

∂T

)2
=

√
σ2

L

(
4π2

T̄ 2
i

)2
+ σ2

i

(
−8π2L

T̄ 3
i

)2

→ Example: σg1 =

√
0.0022

(
4π2

1.782062

)2
+ 0.000152

(
8π2 · 0.796
1.782063

)2
≈ 0.0259m/s2

(11)

We continue by calculating the weighted mean of the values gi to obtain a final estimate of g:

ḡ =

4∑
i=1

wigi

4∑
i=1

wi

for wi = 1
σ2

gi

→ Example: ḡ =
9.89

0.02592 + 9.60
0.02882 + ...

1
0.02592 + 1

0.02882 + ...
≈ 9.79m/s2 (12)

The error in the weighted mean σḡ is given by:

σḡ =
√√√√√ 1

4∑
i=1

wi

= 1√
1

0.02592 + 1
0.02882 + ...

≈ 0.0176m/s2 (13)

We thereby report a final value of
ḡ = 9.79± 0.02m/s2,
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as our best estimate for g. We see that this value is in agreement with the accepted value of g∗ = 9.806m/s2, as ḡ sits
approximately one standard deviation away from g∗. The percent error between ḡ and the accepted value, given by

Figure 5: Values of g for a Given Length vs. Length Index (i)

Fig. 5. We plot each gi vs. i in order to visualize the weighted mean. The points gi and their errors σgi are
shown in blue. The line in red shows the mean, which can be obtained by doing a weighted fit of a constant
value to the data points. We perform this process in Igor, which returns the line at g = 9.79 ± 0.02, equivalent
to our estimate of ḡ calculated by hand above. We see that there is some variation of the data points around
the mean (none are within one error bar of the mean itself), which is summarized by the value χ2 = 72.1 � 4.
The Chi-Square value returned by Igor would be equal to 4, (the number of data points) if we had a perfect fit.

100 ·
(

ḡ−g∗

g∗

)
is −0.204%. The negative sign on the percent error indicates that we have underestimated, rather than

overestimated, g. This provides further indication that our value of g is reliable. Since our error bars are of the same
order as the difference between ḡ and g∗, the small percent error also helps us understand that our error bars are small
relative to the value we are calculating, and that our procedure was consequently relatively precise. The weighted mean
can be represented graphically by fitting a constant to the data points. The points are weighted according to their errors
σgi. A plot illustrating this process can be found in Fig. 5, above. (This method is equivalent to the calculation of the
weighted mean shown above, and returns the same value of, and error in, ḡ). Please see the appendices for a discussion
of other possible approaches to the analysis.

4 Conclusions

We measure the period of pendulums for 4 different lengths, and use the expression in eq. (3) to calculate the value
of g, the gravitational acceleration near the surface of the Earth. The limiting precision factor in this experiment was
the number of significant figures and error estimates we were able to obtain in our measurements of length. We repeat
sample length measurements according to our measurement procedure to estimate the uncertainty in that procedure; these
are found to be several orders of magnitude larger than the uncertainties in the extremely precise measurements of the
pendulum’s period we carry out. We combine the data for all four pendulums used with a weighted mean, which allows
us to report a final value of g = 9.79 ± 0.02m/s2. This is within one error bar of the accepted value of the constant
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on Earth’s surface; we assume the actual gravitational acceleration at our lab in Rochester deviates negligibly from this
accepted value, and that our results are therefore accurate.

4.1 Remarks

A more precise method for measuring the length of the pendulum would allow us to carry out a more precise experiment,
since the measurements of the period were already very precise. This would have to come in tandem with a more
complicated analysis (which includes the mass of the string, and specific shapes and densities of the masses) in order to
make assumptions consistent with that higher level of precision. Although this could be done in principle, we do not see
a practical way to implement these improvements with the lab equipment available for PHY 141.

4.2 Remarks for PHY 141 Students

This report is intended to be a model of a PHY 141 report, written slightly above the level of an ideal student report.
Please note that the LATEX formatting with numbered equations and such is not necessary for PHY 141; neat handwritten
equations, or those written in the word processor/equation editor of your choice are acceptable, as are neat hand-drawn
figures. This report is, however, intended to give students an example of the level of detail and style of scientific writing
they can strive to master in their lab reports over the course of the year. Some things to pay attention to (pertaining to
common errors or oversights I see in student reports):

• The theory section relates the assumptions implicit in the equations we use to the experimental setup. It is important
to learn to make those connections; many students get comments on their reports to the effect of “what assumptions
are made?”, and I hope that the last, short paragraph of the theory section helps clarify what that means. It may be
appropriate to discuss such assumptions in the conclusions (as part of a discussion of sources of error), rather than
in the theory; either is fine, so long as there is some acknowledgment of the assumptions in the report, particularly
if there is a disagreement between the expectations and results.

• Student experimental descriptions generally summarize the main points of the experiment effectively (either in
paragraph form as shown here, or in a bulleted style – both are acceptable). Specific details such as those regarding
the measurement procedure illustrated in Fig. 4 are often missing however. These sorts of details make the difference
between an adequate experimental description and one that is truly complete.

• We try to encourage plot based analyses, as a visual presentation of the data is often more concise and easy to
follow than a long list of tables and calculations (although both are necessary to varying degrees, depending on
the experiment you are reporting on). Notice how Fig. 5 gives a much clearer impression of what is happening
with the values and weighted mean (in terms of the bigger picture) than the details in Table 7 and the surrounding
calculations can. A somewhat different, and more graphical approach without a weighted mean can be used in many
PHY 141 activities; this method is described in the appendix below. Note also which details are present in the data
analysis: there are enough example calculations and tables to summarize all of the data collected for this experiment,
and I try to be very clear about where each error is coming from and what I am doing with it next.

• Notice how captions are used for all of the tables and plots. Supporting materials can appear in the text as done
here, or in an appendix, but either way, numbered references from the text and insightful captions about the contents
of a figure or table are not optional.

• Please note the style of the abstract and conclusions. There is no “new” information in the conclusion above; it is
just a more concise summary of what happened in the preceding three sections. Some of the discussions in the Data
Analysis section could be shifted here, but take care not to make the conclusions too long. For labs with questions in
the manual, the conclusion will grow a bit as students summarize their responses to those questions. The conclusions
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would also have grown if there were a disagreement between the calculated result and the expected result, as that
would warrant some additional discussion. The abstract contains similar information to the conclusions, but is
distilled even further to provide a few sentences of context for a prospective reader. The abstract for a PHY 141
report should never need to be longer than the one shown here.
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A Appendix: Alternate Data Analysis Methods and Discussion

We often like to do analyses by plotting two sides of an equation against each other, such that we can determine a value
of interest by looking at the slope of a line of best fit through the data points. This approach is very effective in many
situations in PHY 141 labs and beyond, but it runs into some problems in this particular data set as we will see below.
These stem from the fact that we usually take measurements in our experiments assuming the controlled variable to be
exact. (In the above experiment, that means we would generally treat the length as being measured without error. We
added an estimate for the error in the length because in this case, the errors in the periods alone are miniscule, and
consequently do not give us a very good error estimate by themselves.) We cannot set an overall weighting wave for our
fit in Igor when we include our length errors, however, because we then have two separate error bars on each point (one
in x and one in y); this gives us no correct/exact way to perform the error analysis with a line of best fit. We can still
approximate the weighting by one of our two error bars, however, in order to illustrate how this kind of analysis might be
carried out if we had error bars on only one parameter in eq. (3) which g depends on, rather than two. We also explore
the limitations of approximating the weighting with the errors in only one variable, when one of them tends to dominate.

A.1 Line of Best Fit with σL

The gravitational acceleration g for each run is given by eq. (3). We see that we can rearrange that expression to read,

4π2L = gT 2, (14)

which indicates that we may plot 4π2L vs. T 2 and expect to obtain a straight line with slope g. If we wish to do this,
we must calculate the error in T̄ 2, and the error bars in 4π2L. We let f(T ) = T 2 and apply the usual error propagation
formula, where σ2

i is the variance in T̄ for the ith length as calculated in Tables 3-6 above:

σ2
f = σ2

i

(
∂f

∂T

)2
= σ2

i (2T )2 → σfi = 2T̄iσi → Example: σf1 = 2 · 1.78206 · 0.00015 ≈ 0.00055s2 (15)

This tells us that σfi is the x-axis error bar in the ith data point. The same process can be applied to h(L) = 4π2L to
determine the error bars σh ≈ 0.080m.

We perform a weighted fit using Igor (shown in Fig. 6), using σh as the basis for the weight factors. Notice that σh is
only the y-axis error bar, and that we have not factored the uncertainty in T into the weighting or error analysis by doing
this. Table 8, shown below, allows us to consider the validity of this approximation, where σg is the overall error in g, as
calculated in the body of the report, and σgL is the error in g neglecting the errors σi:

σgi =

√
σ2

L

(
∂g

∂L

)2
+ σ2

i

(
∂g

∂T

)2
=

√
σ2

L

(
4π2

T̄ 2
i

)2
+ σ2

i

(
−8π2L

T̄ 3
i

)2
and σgLi = 4π2σL

T̄ 2
i

and σgT i = 8π2Lσi

T̄ 3
i

(16)

σg(m/s2) σgL(m/s2)
i = 1 0.0259 0.0252
i = 2 0.0288 0.0285
i = 3 0.0701 0.0346
i = 4 0.0552 0.0421

Table 8. We compare σg and σgL. We see that σgL is a reasonable approximation for
σg for i = 1, 2, where the errors in T are the smallest. It is not, however, an adequate
approximation for i = 3, 4, where the errors in T account for one third to one half of
the total error. We can conversely infer that σgT will never be a good approximation
for the total error; the errors in T are too small compared to those in length. This is
discussed in section A.2.

The y-intercept of the fit is constrained to be zero as we do not anticipate any offset in our theory. The slope of this line,
using only σh for weighting, gives us an estimate for g:

gfinal = 9.82± 0.02m/s2 (17)
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We see that we obtain a value that is within one error bar of the accepted value of g∗ = 9.806m/s2 which is therefore in
agreement with the accepted value. It is also within two error bars of the value we obtain with a weighted mean in the
main body of the report, indicating that although our approximation for the weighting was not ideal, the effect on the
final results is very small. This is an acceptable analysis in this case.

Figure 6: 4π2Li vs. T̄ 2
i

Fig. 6. We plot 4π2L against T 2, where each data point is T̄i from Tables 3-6, with the error bars σg in the
y direction, and the error bars σfi in the x direction (points and errors shown in blue). The linear fit shown
(red) was performed through these points, using the error bars as the basis for weights, with the y-intercept
constrained to be zero as expected in our theory. The slope of the line is g = 9.82 ± 0.02m/s2. The Chi-Square
value for the fit returned by Igor is χ2 = 88.5 � 4 (where 4 is the number of data points; since Igor does not
return the reduced χ2 we expect χ2 ≈ 4 for a near perfect fit). Our χ2 indicates that our points still sit several
error bars away from the fit line, even though the points look approximately linear, and are well correlated as
indicated by Pearson’s Correlation Coefficient Vpr = 0.997. From the correlation values we conclude that despite
the variation of the data points around the fit, it is still reasonable to have assumed the direct proportionality
in eq. (3).

A.2 Line of Best Fit with σT

Suppose we use σfi instead of σh to weight the linear fit. We noted above that the errors are dominated by σh, and that
we obtained a value very similar to the weighted mean used in the body of the report by using only the error related
to σh. It is thus unsurprising that using only the T errors for the fit weighting, with the exact same process as in the
preceding section, we obtain a value of g = 9.68± 9.5× 10−5m/s2. The value of g from this weighting is further from the
expected value, and the error is virtually negligible, since it sits beyond the last significant figure we are able to report
for the value itself. This is consequently not a terribly good approach for the analysis for this particular data set, even
though for most data sets in a PHY 141 lab this procedure would actually be the expected one, and would provide good
results. This agrees neither with the weighted mean, any of the other fits, nor the accepted value of g, since it sits many
more than three standard deviations from all of them.
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