
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Journey to Hades

Hades is a hypothetical black hole near the bright star Vega (in the constellation Lyra),
 26 light years from Earth.

- Travel in starship: acceleration $=$ Earth's gravity (" 1 g "), speed close to the speed of light most of the time. Nothing travelling through physical space can go faster than the speed of light.
- The trip takes 6 years, measured on the starship, but 26 years, measured by an observer on Earth
This difference is a prediction of Einstein's theory of relativity: length contraction. The distance to Hades looks shorter from the moving starship than from the stationary Earth (or Hades). (We will discuss this in detail in just a few lectures.)
Enter orbit above Hades: orbit circumference $=10^{6} \mathrm{~km}$ (half that of the Moon's orbit), revolution period $=5$ minutes, 46 seconds (speed in orbit $=2890 \mathrm{~km} / \mathrm{s}$).
Lecture 02 Astronomy 102 3
A note about orbits
Orbiting a black hole is just like orbiting a planet or a star, if
the orbit is much larger than the black hole.
No thrust is required to stay in an
orbit.
In orbit, the force of gravity
provides the required force
circular motion.
For each radius there is one proper v.
If the starship has the wrong speed
for the orbit, it will drift into a
different orbit which is a match for
the speed. This is called orbital stability.
Lecture 02
\qquad
\qquad the orbit is much larger than the black hole.
No thrust is required to stay in an orbit.
the force of gravity provides the required force motion

If the starship has the wrong speed for the orbit, it will drift into a
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A picture of Hades?	
We know of several real black holes that are the size of Hades, but none that have so little interstellar material falling into them, and none that aren't spinning rapidly. It's very hard to see black holes from a great distance unless there's matter falling into them at a large rate.	
This is a false-color, radio-wavelength image of GRO J1655-40. Hot material on its way into the black hole produces the point of light in the center; the other features are gas clouds expelled at nearly light speed after missing the black hole. (By Bob Hjellming and Mike Rupen, NRAO.)	Astronomy 102

Exploring the neighborhood of Hades

Drop Arnold the robot into the hole, having him send laser signals back to the ship as he falls.
Laser light shifts to longer and longer wavelength as he falls: the Doppler shift caused by his high speed with respect to you.
Instead of winking out abruptly as he crosses the hole's \qquad horizon, signals keep arriving at gradually increasing intervals forever: from the outside it looks like it takes Arnold an infinite amount of time to cross the horizon, even though he's already fallen in (according to him).
This is time being warped by the BH's gravity.
\square He cannot get out once he falls past the horizon!

Lecture 02	Astronomy 102	8

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(1) In Arnold's view

Suppose we were also shining a green laser at Arnold as he fell. How do you suppose our laser spot looked to him?
\qquad
\qquad
\qquad
A. Just like his did to us: gets redder ever more slowly, never \qquad winks out.
B. Gets steadily redder without bound, until the Crash.
C. Gets bluer ever more slowly, never winks out.
D. Gets steadily bluer without bound, until the Crash. Lecture $02 \quad$ Astronomy 102
\qquad
\qquad

In the Earth's view
During our trip, the distance from Earth to Hades appeared to be much shorter than when we were at rest.
An observer watching from Earth would also see an element of the scene to be shorter during our trip. What? A. The distance from Earth to Hades, just like us. B. Our spaceship \quad C. Hades itself \quad D. The Earth. Lecture 02

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mid-lecture break (4 minutes 43 seconds).
\qquad
WeBWorK homework
set 1 is now available -
\qquad
it's due at 8:30 AM,
Monday, February 1,
2016.
\qquad
\qquad
Image: barred galaxy M95. Our
home galaxy, the Milky Way,
home galaxy, the Milky Way,
would look much like this if
viewed face-on from a great
distance (
Michael and Michael
McGuiggan/Adam Block/
NOAO/AURA/NSE).
Lecture 02
Astronomy 102

Changing orbits around Hades, for orbits lots bigger than the horizon

To move from orbit to orbit, our spaceship has to obey the laws of physics: in particular the conservation of energy and orbital spin (a.k.a. angular momentum).
Smaller-radius orbits have faster orbital speeds and higher kinetic energy (energy of motion), but lower spin.
Thus: to move to a smaller-radius orbit one has to put on the brakes to reduce the spin, and fall toward the smaller orbit, picking up speed again without adding spin.
\square Brakes, in space: fire thrusters straight ahead.

- Vice-versa for a larger orbit: fire thrusters straight behind.

These are the same rules that apply for spacecraft orbiting
\qquad planets and stars.

Lecture 02	Astronomy 102	14

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exploring the neighborhood of Hades (cont'd)
Take a capsule into orbits progressively smaller in circumference, trying to reach an orbit 1.0001 times larger than the horizon.

I As you approach the horizon, the circumference of the orbit becomes noticeably less than 2π times the radius (warped space: "non-Euclidean geometry").
In a 100,000 km-circumference orbit, you feel strong tidal

forces: head and feet are pulled apart by a force one-eighth of Earth's gravity (" $1 / 8$ g").
By $30,000 \mathrm{~km}$, your head and feet are pulled apart by 4 g ; by $20,000 \mathrm{~km}$ (still more than a factor of 100 larger than the horizon circumference), it's 15 g .

- Give up and return to the ship! We're clearly not going to make it close enough to the horizon; we need a more massive black hole.

Lecture 02	Astronomy 102	16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

One way to visualize warped space: "hyperspace"
To connect these circles
with segments of these
"too long" lengths, one
can consider them to
be offset from one
another along some
imaginary dimension
that is perpendicular to
x and y but is not z. (If
it were z, the circles
wouldn't appear to lie
in a plane!). Such addi-
tional dimensions
comprise hyperspace.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
How many hyperspace dimensions?
To describe space warping in a plane (two dimensions) we
have just made use of one dimension of hyperspace.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Journey to Sagittario

Sagittario is a black hole, a good deal less hypothetical than Hades, lying at the exact center of our Milky Way galaxy, about 30,100 light years away (actually 28,000 ly away).
Travel in starship: acceleration = Earth's gravity again, speed close to the speed of light most of the time.
This time the trip takes 20 years, measured on the starship, but 30,102 years, measured by an observer on Earth. \qquad Properties of Sagittario:
Mass $=10^{6} M_{\odot}$ (it's been measured to be $4 \times 10^{6} M_{\odot}$)

- Horizon circumference $=1.86 \times 10^{6} \mathrm{~km}$ (a factor of eight larger than the Moon's orbit)
Rotation period = infinite (it's measured to be 16 minutes)
Again, not very much interstellar gas falls into the hole.
Astronomy 102
23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Changing orbits around Sagittario, for orbits close to the horizon size

As the starship approaches the horizon we would notice ourselves doing different things than before, to satisfy the conservation of energy and spin when changing orbits.
For orbits 3 times the horizon circumference and smaller, the thrust has to be applied backwards to have the desired effect on orbital changes: speed up to reduce orbital spin, put on the brakes to increase spin.
This is yet another a result of the warping of space near the horizon, by the black hole's strong gravity. \qquad
\square Orbits smaller than 3 horizons are unstable as a result:

- An orbiter without thrusters which gets a kick in the forward (reverse) direction will spiral into the black hole (careen away from the black hole).

Lecture 02

 Astronomy 102
Exploring the neighborhood of Sagittario

Take a capsule into orbits progressively smaller in circumference, trying to reach an orbit 1.0001 times larger than the horizon again.
Tidal forces are bearable in orbits as small as 1.5 times the horizon circumference
There are no orbits smaller than 1.5 horizon circumferences, where the orbital speed is the speed of light.
To get closer, one must attempt a "vertical landing:" balancing the BH^{\prime} s gravitational pull with thrust instead of centrifugal force.
Calculations: hovering at 1.0001 horizon circumferences takes a thrust of 150 g ! Better find a more massive BH.

Lecture 02	Astronomy 102	28

