

Electronic features of Astronomy 102

□ Computer-projected lectures, for greater ease in presentation of diagrams, astronomical images and computer simulations, and for on-line accessibility on

□ Web site, including all lecture presentations, schedule,

□ Personal response system, for in-lecture problem-solving. (Required; available at the UR Bookstore.)

Astronomy 102

5

our.

Lecture 01

and much more.

exam generator.

• Primary reference for course.

□ WeBWorK , a computer-assisted personalized homework and

D	Test PRS question 2		
What is the best bas	eball team in the US	5?	
A. Red Sox	B. Yankees	C. Buffalo Bills	
A. Red Sox D. I do not know	B. Yankees E. I do not care	C. Buffalo Bills	

	centimeters	kilometers	miles	light years
Diameter of a hydrogen atom	1.1×10-8			
Diameter of a human hair	8.0×10-3			
Diameter of a penny	19			
Diameter of Rochester	2.0×106	20	12	
Diameter of the Earth	1.3×109	1.3×104	7.9×103	
Diameter of the Moon	3.5×10 ⁸	3.5×103	2.1×103	
Diameter of Jupiter	1.4×1010	1.4×10 ⁵	8.8×104	
Diameter of the Sun	1.4×1011	1.4×106	8.6×105	
Diameter of the Milky Way galaxy	1.6×10 ²³			1.7×10 ⁵
Distance to Buffalo	1.0×107	100	62	
Distance to the Moon	3.8×1010	3.8×105	2.4×105	
Distance to the Sun	1.5×1013	1.5×10 ⁸	9.2×107	
Distance to the next nearest star, α Centauri	3.8×10 ¹⁸			4
Distance to the center of the Milky Way	2.6×10 ²²			2.7×104
Distance to the nearest galaxy	1.6×10 ²³			1.7×105

□ Diameter of normal stars: millions of *kilometers* (km) □ Distance between stars in a galaxy: a few *light-years* (ly) □ Diameter of normal galaxies: tens of *kilo-light-years* (kLy) □ Distances between galaxies: a *million light-years* (Mly) □ 1 ly = 9.46052961×10¹⁷ cm = 9.46052961×10¹² km □ 1 km = 10⁵ cm; 1 kly = 10³ ly; 1 Mly = 10³ kly = 10⁶ ly. Example: The Andromeda nebula (a galaxy a lot like our Milky Way) lies at a distance *D* = 2.5 Mly. How many centimeters is that?

 $D = 2.5 \text{ Mly} \times \frac{10^6 \text{ ly}}{1 \text{ Mly}} \times \frac{9.46 \times 10^{17} \text{ cm}}{1 \text{ ly}} = 2.4 \times 10^{24} \text{ cm}$

Mass	es in astron	omy	
•	Grams	Pounds	Solar masses (M_{\odot})
Hydrogen atom	1.67×10-24		
Penny (uncirculated)	3.2	0.0071	
Ton	1.02×10^{6}	2240	
Earth	6.0×10^{27}	1.3×10^{25}	3.0×10-6
Moon	7.4×10^{25}		3.7×10-8
Jupiter	1.9×10^{30}		1.0×10-3
Sun	2.0×1033		1
Milky Way galaxy	6×1045		3×1012
Lecture 01	Astronomy 102		18

	Times and ages in astronomy			
Z 6 54	seconds	hours	days	years
Earth's rotation period	8.64×10^{4}	24	1	
Moon's revolution period	2.3606×106	655.73	27.322	
Earth's revolution period	3.1558×107	8.7661×103	365.25	1
Century	3.16×109			100
Recorded human history	1.6×1011			5000
Milky Way Galaxy's	7.5×1015			2.4×10^{8}
rotation period (at Sun's orbit)				
Age of the Sun and Earth	1.44×1017			4.56×109
Total lifetime of the Sun	4.7×10^{17}			1.5×10^{10}
Age of the Universe	4.4×10^{17}			1.4×10^{10}
Lecture 01	Astronomy 10	02		21

The fundamental dimensions (continued)

Astronomy 102

23

24

The dimensions of all other physical quantities are combinations of these fundamental dimensions.

- □ For instance: the dimension of **velocity**, and velocity's magnitude **speed**, is distance divided by time, as you know.
- □ The dimension of **energy** is mass times distance squared, divided by time squared.
- i.e. mass times the square of the dimension of speed
 Units are the scales of the *quantities* that go with the *qualities* that are dimensions.

Thus: four fundamental dimensions for location (three space, one time), and in principle four for response to forces (gravity, electricity, and the strong and weak nuclear forces).

Astronomy 102

Lecture 01

Lecture 01

	Speeds in	astronom	y
	cm per second	km per second	miles per hour
NYS Thruway speed limit	3.0×103	3.0×10-2	65
Earth's rotational speed at the equator	4.7×10 ⁴	0.47	1050
Speed of Earth in orbit	3×106	30	
Speed of Sun in orbit around center of Milky Way	2.5×107	250	
Speed of Milky Way with respect to local Universe	5.5×107	550	
Speed of light	2.9979×1010	2.9979×105	
Lecture 01 Astro	momy 102		25

V	fork, neat and energy in astron	nomy
	Hydrogen atom binding energy	1.6×10 ⁻¹² erg
	Dietary calorie	4.2×10 ¹⁰ erg
敶	Burn 1 kg anthracite coal	4.3×1014 erg
	Detonate H bomb (1 megaton)	4.2×10 ²² erg
	Earth-Sun binding energy	5.3×10 ⁴⁰ erg
	Sun's fuel supply at birth	2×1051 erg
WW	Supernova (exploding star)	10 ⁵³ erg

The others we have listed will find some uses too.

28

Now years	ou try, with PRSs			
There are eight furlongs in a mile, and two weeks in a fortnight. Suppose we take the furlong to be our unit of length, and a fortnight to be our unit of time.				
Then, what are the units A. Furlong fortnights	of speed? B. Fortnights per furlong			
Lecture 01	Astronomy 102	33		

And	again.
There are eight furlongs in a n fortnight. Suppose we take the length, and a fortnight to be or	nile, and two weeks in a e furlong to be our unit of ur unit of time.
What is the NYS Thruway spe units?	ed limit in this new system of
A. 1.5 furlongs per fortnight	B. 1.5×10 ⁵ furlongs per fortnight
C. 8×10 ⁴ furlong fortnights	D. 42 fortnights per furlong
Lecture 01 Astron	10my 102 34

